(x-1)11展開式中x的所有偶次項的系數(shù)之和是
 
考點:二項式定理
專題:二項式定理
分析:在(x-1)11展開式的通項公式中,令x的冪指數(shù)為偶數(shù),可得r的值,從而求得x的所有偶次項的系數(shù)之和.
解答: 解:(x-1)11展開式的通項公式為 Tr+1=
C
r
11
•(-1)r•x11-r,
令11-r為偶數(shù),可得r為奇數(shù),故r=1,3,5,7,9,11,
∴開式中x的所有偶次項的系數(shù)之和是-
C
1
11
-
C
3
11
-
C
5
11
-
C
7
11
-
C
9
11
-
C
11
11
=-210=-1024,
故答案為:-1024.
點評:本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,求展開式中某項的系數(shù),二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=1,Sn表示前n項和,且Sn,Sn+1,2S1成等差數(shù)列.
(1)計算S1,S2,S3的值;
(2)猜想Sn的表達(dá)式,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求經(jīng)過直線l1:x+y-5=0,l2:x-y-1=0的交點且平行于直線2x+y-3=0的直線方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x+
a
x
(a>0),若f(x)在區(qū)間(4,+∞)上是增函數(shù),則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為e,過右焦點且斜率為2e-2的直線與雙曲線的兩個交點分別在第三、四象限,則e的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,且a=2,b=
7
,B=60°,則△ABC的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我國齊梁時代的數(shù)學(xué)家祖暅(公元前5-6世紀(jì))提出了一條原理:“冪勢既同,則積不容異.”這句話的意思是:夾在兩個平行平面間的兩個幾何體,被平行于這兩個平行平面的任何平面所截,如果截得的兩個截面的面積總是相等,那么這兩個幾何體的體積相等.設(shè):由曲線x2=4y和直線x=4,y=0所圍成的平面圖形,繞y軸旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體為Γ1;由同時滿足x≥0,x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的點(x,y)構(gòu)成的平面圖形,繞y軸旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體為Γ2.根據(jù)祖暅原理等知識,通過考察Γ2可以得到Γ1的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=-3+4i,則|z|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}(n∈Z)中,“an+1+an=an+1+an+2”是數(shù)列{an}是等差數(shù)列的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊答案