AC
可以寫成①
AO
+
OC
;②
AO
-
OC
;③
OA
-
OC
;④
OC
-
OA
.其中正確的是( 。
A、①②B、②③C、③④D、①④
考點(diǎn):向量的減法及其幾何意義,向量的加法及其幾何意義
專題:平面向量及應(yīng)用
分析:利用向量的運(yùn)算法則即可判斷出.
解答: 解:∵①
AO
+
OC
=
AC
;
AO
-
OC
=
AO
+
CO
AC

OA
-
OC
=
CA
;
OC
-
OA
=
AC

因此其中正確的是①④.
故選:D.
點(diǎn)評(píng):本題考查了向量的原式法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(3,3),|
b
|=6,
a
⊥(
a
-
b
),則向量
a
b
的夾角大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-1,x≤0
log2x+1,x>0
,則f(f(
1
4
))( 。
A、-
1
2
B、
1
2
C、1
D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(1,1),且
a
a
b
的夾角為銳角,則實(shí)數(shù)λ的取值范圍為( 。
A、(
5
3
,+∞)
B、(-∞,-
5
3
C、(-
5
3
,0)
D、(-
5
3
,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
5
x5+
1
3
x3在R上有( 。﹤(gè)極值點(diǎn).
A、1個(gè)B、0個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸入m=39,n=27,則輸出的實(shí)數(shù)m的值是( 。
A、27B、12C、9D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某社區(qū)有400個(gè)家庭,其中高等收入家庭120戶,中等收入家庭180戶,低收入家庭100戶.為了調(diào)查社會(huì)購買力的某項(xiàng)指標(biāo),要從中抽取一個(gè)容量為100的樣本,記作①;某校高一年級(jí)有13名排球運(yùn)動(dòng)員,要從中選出3人調(diào)查學(xué)習(xí)負(fù)擔(dān)情況,記作②.那么,完成上述2項(xiàng)調(diào)查宜采用的抽樣方法是( 。
A、①用簡單隨機(jī)抽樣,②用系統(tǒng)抽樣
B、①用分層抽樣,②用簡單隨機(jī)抽樣
C、①用系統(tǒng)抽樣,②用分層抽樣
D、①用分層抽樣,②用系統(tǒng)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+2x)n的展開式中所有系數(shù)之和等于729,那么這個(gè)展開式中x3項(xiàng)的系數(shù)是(  )
A、56B、160
C、80D、180

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|
3
2
-x|.
(Ⅰ)求不等式f(x)≤
5
2
的解集;
(Ⅱ)如果存在x∈[-2,4],使不等式f(x)+f(x+2)≥m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案