【題目】已知橢圓的上頂點為,且過點

(1)求橢圓的方程及其離心率;

(2)斜率為的直線與橢圓交于兩個不同的點,當直線的斜率之積是不為0的定值時,求此時的面積的最大值.

【答案】(1),;(2)1

【解析】

試題1)由題意易得,將點代入到橢圓方程可得的值,即可得橢圓的方程及其離心率;(2)設直線的方程為,聯(lián)立直線與橢圓的方程,運用韋達定理,將化簡為,根據(jù)其為定值得的值,然后利用弦長公式將表示為關于的函數(shù),利用二次函數(shù)的性質(zhì)可得結果.

試題解析:(1)由題意可得

在橢圓上,所以,解得,

所以橢圓的方程為,

所以,故橢圓的離心率.

(2)設直線的方程為

,消去,得,

所以,

,則 ,

由題意,為定值,所以,即,解得

此時

到直線的距離

顯然,當(此時,滿足),即時,取得最大值,最大值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)。

(I)當時,證明:當時,;

(II)若當時,恒成立,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三棱柱中,平面,是邊長為的等邊三角形,邊中點,且.

(1)求證:平面平面;

(2)求證:平面;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在含有個元素的集合中,若這個元素的一個排列(,…,)滿足,則稱這個排列為集合的一個錯位排列(例如:對于集合,排列的一個錯位排列;排列不是的一個錯位排列).記集合的所有錯位排列的個數(shù)為.

(1)直接寫出,,的值;

(2)當時,試用,表示,并說明理由;

(3)試用數(shù)學歸納法證明:為奇數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心為原點,且與直線相切.

1)求圓的方程;

2)點在直線上,過點引圓的兩條切線,,切點為,,求證:直線恒過定點.

3)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設關于某設備的使用年限x和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:

使用年限x

2

3

4

5

6

維修費用y

2.2

3.8

5.5

6.5

7.0

若由資料知yx呈線性相關關系.

1)請畫出上表數(shù)據(jù)的散點圖;

2)請根據(jù)最小二乘法求出線性回歸方程的回歸系數(shù)ab;

3)估計使用年限為10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,DAC的中點,四邊形BDEF是菱形,平面平面ABC,,

若點M是線段BF的中點,證明:平面AMC;

求平面AEF與平面BCF所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,不過坐標原點的直線交于,兩點.

(Ⅰ)若,證明:直線過定點;

(Ⅱ)設過且與相切的直線為,過且與相切的直線為.當交于點時,求的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)記函數(shù)的極值點為,若,且,求證:

查看答案和解析>>

同步練習冊答案