對吉安市某重點高中男女同學(xué)是否喜歡物理進行了一個調(diào)查,調(diào)查者隨機調(diào)查了146名學(xué)生,下表給出了部分調(diào)查結(jié)果:
喜歡物理情況
學(xué)生
喜歡 不喜歡 總計
男同學(xué) 46 b 76
女同學(xué) c d e
總計 f 80 n=146
(1)根據(jù)以上數(shù)據(jù),求出上述2×2聯(lián)表中b,c,d,e,f;
(2)試問是否有99%以上把握認(rèn)為男女同學(xué)喜歡物理的程度有差異?
參考公式:x2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(其中n=a+b+c+d)
x2≤2.706 x2>2.706 x2>3.841 x2>6.635
是否有關(guān)聯(lián) 沒有關(guān)聯(lián) 90% 95% 99%
考點:獨立性檢驗的應(yīng)用
專題:計算題
分析:(1)根據(jù)列聯(lián)表中各數(shù)據(jù)之間的關(guān)系求解;
(2)代入公式計算相關(guān)指數(shù)K2的觀測值,比較與6.635的大小可得判斷有關(guān)的可靠性程度.
解答: 解:(1)根據(jù)列聯(lián)表中各數(shù)據(jù)之間的關(guān)系得:b=30,f=66,c=20,d=50,e=70;
(2)相關(guān)指數(shù)x2=
146×(46×50-20×30)2
66×80×76×70
=15.02>6.635.
∴有99%以上把握認(rèn)為喜歡物理的程度與男女有關(guān).
點評:本題考查了獨立性思想方法,熟練掌握列聯(lián)表中各數(shù)據(jù)之間的關(guān)系及相關(guān)指數(shù)觀測值與臨界值大小比較的含義是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是奇函數(shù),且在區(qū)間[-
π
2
,0]內(nèi)單調(diào)遞減,則f(x)可以是( 。
A、sin(π-x)
B、cos(π+x)
C、sin(
π
2
-x)
D、cos(
π
2
+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某校高三年級學(xué)生一次數(shù)學(xué)測試的400份試卷中隨機抽取若干份試卷作為樣本進行分析評估,抽取的試卷成績的莖葉圖和頻率分布直方圖都都受到了不同程度的損壞,其可見部分如下,據(jù)此解答下列問題:
(Ⅰ)求抽取的成績在[80,90)的試卷份數(shù)及樣本數(shù)據(jù)的中位數(shù);
(Ⅱ)若樣本數(shù)據(jù)中得分在[80,90)的數(shù)學(xué)成績的平均分為85,估計該校高三年級學(xué)生此次數(shù)學(xué)測試的平均成績.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值.
(1)求a,b
(2)討論f(1)和f(-1)是函數(shù)f(x)的極大值還是極小值;
(3)過點A(0,16)作曲線y=f(x)的切線,求此切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于任意實數(shù)x,不等式|x+2|+|x-2|≥a恒成立.
(1)求a的取值范圍;
(2)當(dāng)a取最大值時,求f(x)=
-x2-
1
2
ax+3
的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex
x+1
(x>-1).
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊為a、b、c,且滿足cos2B=-
1
2

(1)求角B的值;
(2)若b=
3
且b≤a,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(ax2+
1
x
5的展開式中x4的系數(shù)為80,則實數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,設(shè)角A,B,C的對邊分別為a,b,c,若c=2,b=1,B=30°,則C=
 

查看答案和解析>>

同步練習(xí)冊答案