【題目】某學(xué)校需要從甲、乙兩名學(xué)生中選一人參加數(shù)學(xué)競(jìng)賽,抽取了近期兩人次數(shù)學(xué)考試的成績(jī),統(tǒng)計(jì)結(jié)果如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲的成績(jī)(分) | |||||
乙的成績(jī)(分) |
(1)若從甲、乙兩人中選出一人參加數(shù)學(xué)競(jìng)賽,你認(rèn)為選誰(shuí)合適?請(qǐng)說(shuō)明理由.
(2)若數(shù)學(xué)競(jìng)賽分初賽和復(fù)賽,在初賽中有兩種答題方案:
方案一:每人從道備選題中任意抽出道,若答對(duì),則可參加復(fù)賽,否則被淘汰.
方案二:每人從道備選題中任意抽出道,若至少答對(duì)其中道,則可參加復(fù)賽,否則被潤(rùn)汰.
已知學(xué)生甲、乙都只會(huì)道備選題中的道,那么你推薦的選手選擇哪種答題方條進(jìn)人復(fù)賽的可能性更大?并說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)選方案二
【解析】
(1)可以用兩種方法決定參賽選手,方法一:先求平均數(shù)再求方差,根據(jù)成績(jī)的穩(wěn)定性決定選手;方法二:從統(tǒng)計(jì)的角度看,看甲乙兩個(gè)選手獲得以上(含分)的概率的大小決定選手;(2)計(jì)算出兩種方案學(xué)生乙可參加復(fù)賽的概率,比較兩個(gè)概率的大小即得解.
(1)解法一:甲的平均成績(jī)?yōu)?/span>;
乙的平均成績(jī)?yōu)?/span>,
甲的成績(jī)方差;
乙的成績(jī)方差為;
由于,,乙的成績(jī)較穩(wěn)定,派乙參賽比較合適,故選乙合適.
解法二、派甲參賽比較合適,理由如下:
從統(tǒng)計(jì)的角度看,甲獲得以上(含分)的概率,乙獲得分以上(含分)的概率
因?yàn)?/span>故派甲參賽比較合適,
(2)道備選題中學(xué)生乙會(huì)的道分別記為,,,不會(huì)的道分別記為,.
方案一:學(xué)生乙從道備選題中任意抽出道的結(jié)果有:,,,,共5種,抽中會(huì)的備選題的結(jié)果有,,,共3種.
所以學(xué)生乙可參加復(fù)賽的概率.
方案二:學(xué)生甲從道備選題中任意抽出道的結(jié)果有
,,,,,,,,,,共種,
抽中至少道會(huì)的備選題的結(jié)果有:
,,,,,,共種,
所以學(xué)生乙可參加復(fù)賽的概率
因?yàn)?/span>,所以學(xué)生乙選方案二進(jìn)入復(fù)賽的可能性更大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(a∈R).
(1)若曲線(xiàn)y=f(x)在x=e處切線(xiàn)的斜率為﹣1,求此切線(xiàn)方程;
(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,求a的取值范圍,并證明:x1x2>x1+x2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)關(guān)于的方程恰有三個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的值.
(2)關(guān)于的方程在上恰有兩個(gè)不等實(shí)數(shù)根,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中為常數(shù)且)在處取得極值.
(1)當(dāng)時(shí),求的極大值點(diǎn)和極小值點(diǎn);
(2)若在上的最大值為1,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將寬和長(zhǎng)都分別為x,的兩個(gè)矩形部分重疊放在一起后形成的正十字形面積為注:正十字形指的是原來(lái)的兩個(gè)矩形的頂點(diǎn)都在同一個(gè)圓上,且兩矩形長(zhǎng)所在的直線(xiàn)互相垂直的圖形,
求y關(guān)于x的函數(shù)解析式;
當(dāng)x,y取何值時(shí),該正十字形的外接圓面積最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線(xiàn)的焦點(diǎn),斜率為的直線(xiàn)交拋物線(xiàn)于兩點(diǎn),且.
(1)求該拋物線(xiàn)的方程;
(2) 為坐標(biāo)原點(diǎn),為拋物線(xiàn)上一點(diǎn),若,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com