9.已知定義域為R的函數(shù)$f(x)=\frac{{-{2^x}-b}}{{{2^{x+1}}+2}}$是奇函數(shù).
(Ⅰ)求實數(shù)b的值;
(Ⅱ)判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅲ)若關(guān)于x的方程f(x)=m在x∈[0,1]上有解,求實數(shù)m的取值范圍.

分析 (1)根據(jù)f(0)=0求得b,再驗證奇偶性;
(2)運用單調(diào)性的定義證明函數(shù)在R上單調(diào)遞減;
(3)根據(jù)單調(diào)性確定函數(shù)的值域,由此得出參數(shù)的范圍.

解答 解:(1)因為f(x)為R上的奇函數(shù),所以,f(0)=0,
解得b=-1,f(x)=$\frac{1-2^x}{{2}^{x+1}+2}$,驗證如下:
f(-x)+f(x)=$\frac{1}{2}$[$\frac{1-{2}^{-x}}{1+{2}^{x}}$+$\frac{1-2^x}{1+2^x}$]=0,
所以,f(-x)=-f(x),即f(x)為奇函數(shù),
因此,b=-1;
(2)任取x1,x2∈(-∞,+∞),且x1<x2,
則f(x1)-f(x2)=-$\frac{1}{2}$[$\frac{{2}^{{x}_{1}}-1}{{2}^{{x}_{1}}+1}$-$\frac{{2}^{{x}_{2}}-1}{{2}^{{x}_{2}}+1}$]=-$\frac{1}{2}$•$\frac{{2}^{{x}_{1}}-{2}^{{x}_{2}}}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$,
因為,x1<x2,所以,${2}^{{x}_{1}}-{2}^{{x}_{2}}$<0,
即f(x1)-f(x2)>0,所以,f(x)在R上單調(diào)遞減;
(3)因為f(x)在[0,1]上單調(diào)遞減,
所以,f(x)∈[f(1),f(0)]=[-$\frac{1}{6}$,0],
要使方程f(x)=m在x∈[0,1]上有解,
則m∈[-$\frac{1}{6}$,0].

點評 本題主要考查了函數(shù)奇偶性的性質(zhì),以及函數(shù)單調(diào)性的判斷和證明,方程有解問題的解法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{a}$=($\sqrt{2}$sinx,$\frac{{\sqrt{2}}}{2}$(cosx+sinx)),$\overrightarrow$=(cosx,sinx-cosx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求y=f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若將f(x)的圖象向左平移$\frac{π}{4}$個單位,再將各點的縱坐標(biāo)伸長為原來的2倍,橫坐標(biāo)不變,得到函數(shù)g(x)的圖象.寫出g(x)的解析式并在給定的坐標(biāo)系中畫出它在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.?dāng)?shù)列{an}滿足a1=1,Sn=n,則a2012=( 。
A.1B.2010C.2011D.2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一個梯形采用斜二測畫法作出其直觀圖,則其直觀圖的面積是原來梯形面積的( 。
A.$\frac{\sqrt{2}}{4}$倍B.$\frac{1}{2}$倍C.$\frac{\sqrt{2}}{2}$倍D.$\sqrt{2}$倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.給出下列四種說法:
(1)函數(shù)y=ax(a>0且a≠1)與函數(shù)$y={log_a}{a^x}(a>0$且a≠1)的定義域相同;
(2)函數(shù)y=x2與函數(shù)y=3x的值域相同; 
(3)函數(shù)$y=\frac{1}{2}+\frac{1}{{{2^x}-1}}$與函數(shù)$y=\frac{{{{(1+{2^x})}^2}}}{{x•{2^x}}}$均是定義在(-∞,0)∪(0,+∞)上的奇函數(shù); 
(4)函數(shù)y=(x-1)2與函數(shù)y=2x-1在(0,+∞)上都是奇函數(shù).
其中正確說法的序號是(  )
A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知方程x2+ax+2b=0(a∈R,b∈R),其一根在區(qū)間(0,1)內(nèi),另一根在區(qū)間(1,2)內(nèi),則$\frac{b-3}{a-1}$的取值范圍為$(\frac{1}{2},\frac{3}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)a,b∈R,下列不等式中恒成立的是( 。
A.$a+\frac{1}{a}≥2$B.$\frac{a}+\frac{a}≥2$C.a2+b2>2abD.$\frac{{{a^2}+3}}{{\sqrt{{a^2}+2}}}>2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖是一個幾何體的三視圖(側(cè)試圖中的弧線是半圓),則該幾何體的體積是( 。
A.8+2πB.8+πC.8+$\frac{2}{3}$πD.8+$\frac{4}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若sin(π+α)+sin(-α)=-m,則sin(3π+α)+2sin(2π-α)等于( 。
A.-$\frac{2}{3}$mB.-$\frac{3}{2}$mC.$\frac{2}{3}$mD.$\frac{3}{2}$m

查看答案和解析>>

同步練習(xí)冊答案