20.已知集合A={x|-2<x<1},集合B={x|-1<x<4}.
(1)求A∩B,A∪B;
(2)求(CRA)∪B,A∩(CRB).

分析 (1)根據(jù)集合的基本運(yùn)算進(jìn)行求解即可.
(2)根據(jù)補(bǔ)集的運(yùn)算進(jìn)行求解即可.

解答 解:(1)∵集合A={x|-2<x<1},集合B={x|-1<x<4}.
∴A∩B={x|-1<x<1},A∪B={x|-2<x<4}.
(2)CRA={x|x≥1或x≤-2},(CRA)∪B={x|x>-1或x≤-2},
CRB={x|x≥4或x≤-1},則A∩(CRB)={x|-2<x≤-1}.

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知U={x|-3≤x<5,x∈Z},A={x|-2<x<4,x∈N},B={-2,-1,0,1},求:A∩B,∁UA,∁U(A∪B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≤0}\\{x+y-3≥0}\\{y≤4}\end{array}\right.$,則z=3x+y的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,∠C=$\frac{π}{2}$,AC=BC,M、N分別是BC、AB的中點(diǎn),將△BMN沿直線MN折起,使二面角B′-MN-B的大小為$\frac{π}{3}$,則B'N與平面ABC所成角的正切值是( 。
A.$\frac{{\sqrt{2}}}{5}$B.$\frac{4}{5}$C.$\frac{{\sqrt{3}}}{5}$D.$\frac{{\sqrt{15}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.求數(shù)列$\frac{1}{2×3},\frac{1}{3×4},\frac{1}{4×5},…\frac{1}{(n+1)(n+2)}$的前n項(xiàng)和Sn=$\frac{n}{2(n+2)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為1的正方形,PD⊥底面ABCD,且PD=1,點(diǎn)E,F(xiàn)分別是棱PB,AD的中點(diǎn).
(Ⅰ)求證:EF⊥平面PBC;
(Ⅱ)求多面體PDFEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知sin(α-π)=$\sqrt{3}$cos(2π-α),且cosα>sinα.
(1)利用三角函數(shù)的定義求sinα,cosα的值.
(2)若α∈(-$\frac{π}{2}$,$\frac{π}{2}$),令f(x)=tan(x+α),試求f(x)的單調(diào)區(qū)間,并求在區(qū)間[$\frac{π}{6}$,$\frac{2π}{3}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列各組函數(shù)表示相等函數(shù)的是( 。
A.y=$\frac{{x}^{2}-4}{x-2}$與y=x+2B.y=$\sqrt{{x}^{2}-3}$與y=x-3
C.y=2x-1(x≥0)與s=2t-1(t≥0)D.y=x0與y=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)i是虛數(shù)單位,$\overline Z$是復(fù)數(shù)Z的共軛復(fù)數(shù),若$Z=\frac{{2{i^3}}}{1+i}$,則$\overline Z$=-1+i.

查看答案和解析>>

同步練習(xí)冊(cè)答案