【題目】如圖, 為坐標原點,橢圓 的左右焦點分別為,離心率為;雙曲線 的左右焦點分別為,離心率為,已知,且.
(1)求的方程;
(2)過點作的不垂直于軸的弦, 為的中點,當直線與交于兩點時,求四邊形面積的最小值.
【答案】(1) (2)
【解析】試題分析:(1)利用橢圓和雙曲線之間的關(guān)系可以用分別表示雙曲線和橢圓的離心率和焦點,由題目和即可得到之間的兩個方程,聯(lián)立方程消元即可求出的值,得到雙曲線和橢圓的標準方程.
(2)利用(1)求出焦點的坐標,設(shè)出弦的直線的方程,聯(lián)立直線與橢圓消得到關(guān)于的一元二次方程,再利用根與系數(shù)的關(guān)系得到兩點縱坐標之間的和與積,進而得到點的縱坐標帶入AB直線即可得到的橫坐標,進而求出直線的方程,即為直線的方程,聯(lián)立直線的方程得到的取值范圍和求出點的坐標得到的長度,利用點到直線的距離得到到直線的距離表達式,進而用表示四邊形的面積,利用不等式的性質(zhì)和的取值范圍即可得到面積的最小值.
(1)由題可得,且,因為,且,所以且 且,所以橢圓方程為,雙曲線的方程為.
(2)由(1)可得,因為直線不垂直于軸,所以設(shè)直線的方程為,聯(lián)立直線與橢圓方程可得,則,,則,因為在直線上,所以,則直線的方程為,聯(lián)立直線與雙曲線可得 ,則,則,設(shè)點到直線的距離為,則到直線的距離也為,則,因為在直線的兩端,所以,
則 ,又因為在直線上,所以 ,
則四邊形面積,因為,所以當時,四邊形面積的最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinxsin(x+3φ)是奇函數(shù),其中φ∈(0, ),則函數(shù)g(x)=cos(2x﹣φ)的圖象( )
A.關(guān)于點( ,0)對稱
B.可由函數(shù)f(x)的圖象向右平移 個單位得到
C.可由函數(shù)f(x)的圖象向左平移 個單位得到
D.可由函數(shù)f(x)的圖象向左平移 個單位得到
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,△ABD是邊長為2的正三角形,PC⊥底面ABCD,AB⊥BP,BC= .
(1)求證:PA⊥BD;
(2)若PC=BC,求二面角A﹣BP﹣D的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某專營店經(jīng)銷某商品,當售價不高于10元時,每天能銷售100件,當價格高于10元時,每提高1元,銷量減少3件,若該專營店每日費用支出為500元,用x表示該商品定價,y表示該專營店一天的凈收入(除去每日的費用支出后的收入).
(1)把y表示成x的函數(shù);
(2)試確定該商品定價為多少元時,一天的凈收入最高?并求出凈收入的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A. 時,函數(shù)是增函數(shù),因為,所以是增函數(shù),這種推理是合情合理.
B. 在平面中,對于三條不同的直線, , ,若, ,將此結(jié)論放在空間中也是如此,這種推理是演繹推理.
C. 命題: , 的否定是: , .
D. 若分類變量與的隨機變量的觀察值越小,則兩個分類變量有關(guān)系的把握性越小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合P={x∈R|x2-3x+b=0},Q={x∈R|(x+1)(x2+3x-4)=0}.
(1)若b=4,存在集合M使得PMQ;
(2)若PQ,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知D點在⊙O直徑BC的延長線上,DA切⊙O于A點,DE是∠ADB的平分線,交AC于F點,交AB于E點.
(1)求∠AEF的度數(shù);
(2)若AB=AD,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角△ABC中,AB⊥BC,D為BC邊上異于B、C的一點,以AB為直徑作⊙O,并分別交AC,AD于點E,F(xiàn).
(1)證明:C,E,F(xiàn),D四點共圓;
(2)若D為BC的中點,且AF=3,F(xiàn)D=1,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com