【題目】如圖,已知D點在⊙O直徑BC的延長線上,DA切⊙O于A點,DE是∠ADB的平分線,交AC于F點,交AB于E點.
(1)求∠AEF的度數(shù);
(2)若AB=AD,求 的值.
【答案】
(1)解:因為AC為⊙O的切線,所以∠B=∠DAC
因為DE是∠ADB的平分線,所以∠ADE=∠EDB
所以∠B+∠EDB=∠DAC+∠ADE,即∠AEF=∠AFE,
又因為BC為⊙O的直徑,所以∠BAC=90°.所以∠AEF= (180°﹣90°)=45°;
(2)解:因為∠B=∠DAC,所以∠ADB=∠CDA,所以△ACD∽△BAD,
所以 = ,
又因為AB=AD,所以∠B=∠ADB=30°,
Rt△BAC中, = =tan30°=
【解析】(1)利用弦切角定理、角平分線的性質(zhì)證明∠AEF=∠AFE,由BC為⊙O的直徑,結(jié)合圓周角定理的推論,可得∠AFE的度數(shù);(2)證明△ACD∽△BAD,根據(jù)三角形相似的性質(zhì)可得 = ,又由AB=AD,可得AD:BD=tanB,求出B角大小后,即可得到答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓、拋物線的焦點均在軸上, 的中心和的頂點均為原點,且橢圓經(jīng)過點, ,拋物線過點.
(Ⅰ)求、的標準方程;
(Ⅱ)請問是否存在直線滿足條件:
①過的焦點;②與交不同兩點、且滿足.
若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 為坐標原點,橢圓 的左右焦點分別為,離心率為;雙曲線 的左右焦點分別為,離心率為,已知,且.
(1)求的方程;
(2)過點作的不垂直于軸的弦, 為的中點,當直線與交于兩點時,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點 在橢圓 上,過橢圓C的右焦點F且垂直于橢圓長軸的弦長為3.
(1)求橢圓C的方程;
(2)若MN是過橢圓C的右焦點F的動弦(非長軸),點T為橢圓C的左頂點,記直線TM,TN的斜率分別為k1 , k2 . 問k1k2是否為定值?若為定值,請求出定值;若不為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】響應(yīng)“文化強國建設(shè)”號召,某市把社區(qū)圖書閱覽室建設(shè)增列為重要的民生工程.為了解市民閱讀需求,隨機抽取市民200人做調(diào)查,統(tǒng)計顯示,男士喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女士喜歡閱讀古典文學(xué)的有36人,不喜歡的有44人.
(1)能否在犯錯誤的概率不超過0.25的前提下認為喜歡閱讀古典文學(xué)與性別有關(guān)系?
(2)為引導(dǎo)市民積極參與閱讀,有關(guān)部門牽頭舉辦市讀書交流會,從這200人中篩選出5名男代表和4名代表,其中有3名男代表和2名女代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男代表和2名女代表參加交流會,記為參加交流會的5人中喜歡古典文學(xué)的人數(shù),求的分布列及數(shù)學(xué)期望.
附:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=lnx﹣ax2+x有兩個零點,則實數(shù)a的取值范圍是( )
A.(0,1)
B.(﹣∞,1)
C.(﹣∞, )
D.(0, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓E: 過 , 兩點,O為坐標原點
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使該圓的任意一條切線與橢圓E 恒有兩個交點A、B,且 ?若存在,寫出該圓的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓滿足:①圓心在第一象限,截軸所得弦長為2;②被軸分成兩段圓弧,其弧長的比為;③圓心到直線的距離為.
(Ⅰ)求圓的方程;
(Ⅱ)若點是直線上的動點,過點分別做圓的兩條切線,切點分別為, ,求證:直線過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com