【題目】已知集合P={x∈R|x2-3x+b=0},Q={x∈R|(x+1)(x2+3x-4)=0}.
(1)若b=4,存在集合M使得PMQ;
(2)若PQ,求b的取值范圍.
【答案】(1)詳見解析(2)(,+∞)
【解析】
(1)由于集合Q={-1,1,-4},當(dāng)b=4時(shí),集合P=,再由 PMQ可得,M是Q的非空子集,從而得到M.
(2)當(dāng)P=,△=9-4b<0時(shí),有.當(dāng)P≠,方程x2-3x+b=0有實(shí)數(shù)根,且實(shí)數(shù)根是-1,1,-4中的數(shù),把x=-1,1,-4代入檢驗(yàn),由此得到實(shí)數(shù)b的取值范圍.
解:(1)∵集合Q={x|(x+1)(x2+3x-4)=0}={x|(x+1)(x+4)(x-1)=0}={-1,1,-4},
當(dāng)b=4時(shí),集合P=,再由P MQ可得,M是Q的非空子集.
共有23-1=7 個(gè),分別為{-1}、{1}、{-4}、{-1,1}、{-1,4}、{1,4}、{-1,1,-4}.
(2)∵PQ,對(duì)于方程x2-3x+b=0,
當(dāng)P=,△=9-4b<0時(shí),有b>,
△=9-4b≥0時(shí),P≠,方程x2-3x+b=0有實(shí)數(shù)根,且實(shí)數(shù)根是-1,1,-4中的數(shù).
若-1是方程x2-3x+b=0的實(shí)數(shù)根,則有b=-4,此時(shí)P={-1,4},不滿足PQ,故舍去.
若1是方程x2-3x+b=0的實(shí)數(shù)根,則有b=2,此時(shí)P={1,2},不滿足PQ,故舍去.
若-4是方程x2-3x+b=0的實(shí)數(shù)根,則有b=2,此時(shí)P={-1,4},不滿足PQ,故舍去.
綜上可得,實(shí)數(shù)b的取值范圍為(,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的焦點(diǎn)坐標(biāo)是F1(﹣1,0)、F2(1,0),過點(diǎn)F2垂直于長(zhǎng)軸的直線l交橢圓C于B、D兩點(diǎn),且|BD|=3.
(1)求橢圓C的方程;
(2)過定點(diǎn)P(0,2)且斜率為k的直線l與橢圓C相交于不同兩點(diǎn)M,N,試判斷:在x軸上是否存在點(diǎn)A(m,0),使得以AM,AN為鄰邊的平行四邊形為菱形?若存在,求出實(shí)數(shù)m的取值范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公比小于1的等比數(shù)列{an}的前n項(xiàng)和為Sn , a1= 且13a2=3S3(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=nan , 求數(shù)列{bn}的前項(xiàng)n和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 為坐標(biāo)原點(diǎn),橢圓 的左右焦點(diǎn)分別為,離心率為;雙曲線 的左右焦點(diǎn)分別為,離心率為,已知,且.
(1)求的方程;
(2)過點(diǎn)作的不垂直于軸的弦, 為的中點(diǎn),當(dāng)直線與交于兩點(diǎn)時(shí),求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)班級(jí)共有105名學(xué)生,某次數(shù)學(xué)考試按照“大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀”的原則統(tǒng)計(jì)成績(jī)后,得到如下列聯(lián)表。
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
總計(jì) | 105 |
已知從甲、乙兩個(gè)班級(jí)中隨機(jī)抽取1名學(xué)生,其成績(jī)?yōu)閮?yōu)秀的概率為.
(1)請(qǐng)完成上面的列聯(lián)表;
(2)能否有把握認(rèn)為成績(jī)與班級(jí)有關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn) 在橢圓 上,過橢圓C的右焦點(diǎn)F且垂直于橢圓長(zhǎng)軸的弦長(zhǎng)為3.
(1)求橢圓C的方程;
(2)若MN是過橢圓C的右焦點(diǎn)F的動(dòng)弦(非長(zhǎng)軸),點(diǎn)T為橢圓C的左頂點(diǎn),記直線TM,TN的斜率分別為k1 , k2 . 問k1k2是否為定值?若為定值,請(qǐng)求出定值;若不為定值,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】響應(yīng)“文化強(qiáng)國(guó)建設(shè)”號(hào)召,某市把社區(qū)圖書閱覽室建設(shè)增列為重要的民生工程.為了解市民閱讀需求,隨機(jī)抽取市民200人做調(diào)查,統(tǒng)計(jì)顯示,男士喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女士喜歡閱讀古典文學(xué)的有36人,不喜歡的有44人.
(1)能否在犯錯(cuò)誤的概率不超過0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān)系?
(2)為引導(dǎo)市民積極參與閱讀,有關(guān)部門牽頭舉辦市讀書交流會(huì),從這200人中篩選出5名男代表和4名代表,其中有3名男代表和2名女代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男代表和2名女代表參加交流會(huì),記為參加交流會(huì)的5人中喜歡古典文學(xué)的人數(shù),求的分布列及數(shù)學(xué)期望.
附:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體的棱長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn),且,則下列結(jié)論中正確的是__________.
①平面;
②平面平面;
③三棱錐的體積為定值;
④存在某個(gè)位置使得異面直線與成角.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com