若圓錐的母線為2,底面面積為π,則該圓錐的體積為
 
考點(diǎn):旋轉(zhuǎn)體(圓柱、圓錐、圓臺)
專題:空間位置關(guān)系與距離
分析:圓錐的底面面積,求出底面半徑,然后求出圓錐的高,即可求出圓錐的體積.
解答: 解:∵圓錐的底面面積為π,
∴圓錐的底面半徑r=1;
又∵圓錐的母線長l=2,
圓錐的高h(yuǎn)=
22-1
=
3
,
所以圓錐的體積V=
1
3
πr2h=
3
3
π,
故答案為:
3
π
3
點(diǎn)評:本題是中檔題,考查計算能力,圓錐的高的求法,底面半徑的求法,是必得分的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線ρ(
2
cosθ-sinθ)-2a=0與曲線
x=sinθ+cosθ
y=1+sin2θ
(θ為參數(shù))有兩個不同的交點(diǎn),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直角梯形ABCD中,AB=AD,∠A=90°,∠C=45°,沿BD將△ABD折起,使平面ABD⊥底面BCD,構(gòu)成三棱錐A-BCD,則三棱錐的四個表面中互相垂直的平面共
 
組.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A,B,C的對邊分別為a,b,c,若其面積S=a2-(b-c)2,則sin
A
2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在二項式定理C
 
0
n
+C
 
1
n
x+C
 
2
n
x2+…+C
 
n
n
xn=(1+x)n(n∈N*)的兩邊求導(dǎo)后,再取x=1得到一個恒等式,這個恒等式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個多面體的三視圖分別為正方形、等腰三角形和矩形,如圖所示,則該幾何體的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:x+ay=2,l2:a2x+y=1且l1⊥l2,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下命題:
①雙曲線
y2
2
-x2=1的漸近線方程為y=±
2
x;
②函數(shù)f(x)=lgx-
1
x
的零點(diǎn)所在的區(qū)間是(1,10);
③已知線性回歸方程為
y
=3+2x,當(dāng)變量x增加2個單位,其預(yù)報值平均增加4個單位;
④已知隨機(jī)變量X服從正態(tài)分布N(0,1),且P(-1≤X≤1)=m,則P(X<-1)=1-m;
⑤已知函數(shù)f(x)=2x+2-x,則y=f(x-2)的圖象關(guān)于直線x=2對稱
⑥α、β是不同的平面,l為直線,若α∥β,l∥α,則l∥β
則正確命題的序號為
 
.(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
,x≥1
1
x
,0<x<1
2x,x<0
,則f[f[f(-2)]]=(  )
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案