【題目】已知函數(shù)
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)如果對(duì)任意,恒成立,求的取值范圍.
【答案】(1)見解析;(2)(-,2]
【解析】
(1)將a代入,求出函數(shù)的導(dǎo)數(shù),分別解f′(x)〈0和f′(x)〉0,求出函數(shù)的單調(diào)區(qū)間即可;
(2)由原不等式移項(xiàng)為右側(cè)為0的形式,構(gòu)造新的函數(shù),通過求導(dǎo)對(duì)a討論,研究其增減性及最值,逐步得解.
(1)當(dāng)a=2時(shí),f(x)=(x2+2x+1)e-x
f′(x)=-(x+1)(x-1)e-x
由f′(x)〈0得x<-1或x>1;由f′(x)〉0得-1<x<1;
所以f(x)的單調(diào)遞增區(qū)間為(-1,1),
f(x)的單調(diào)遞減區(qū)間為(-,-1),(1,+)
(2)f(x)≤x+1
ax2+ax+1≤(x+1)ex
(x+1)ex-ax2-ax-1≥0
令g(x)=(x+1)ex-ax2-ax-1,則g′(x)=(x+2)ex-ax-a,
令F(x)=g′(x)=(x+2)ex-ax-a,則F′(x)=(x+3)ex-a,
令t(x)=F′(x)=(x+3)ex-a,則t′(x)=(x+4) ex,
當(dāng)x≥0時(shí),t′(x)>0恒成立,從而t(x)在[0,+)上單調(diào)遞增,
此時(shí)t(0)=3-a,
F(0)=2-a,g(0)=0
當(dāng)a≤2時(shí),t(x)≥t(0)=3-a>0,即F′(x)>0所以F(x)在[0,+)上單調(diào)遞增
所以F(x)≥F(0)=2-a≥0,即g′(x)≥0,從而g(x)在[0,+)上單調(diào)遞增
所以g(x)≥g(0)=0
即(x+1)ex-ax2-ax-1≥0恒成立,
所以當(dāng)a≤2時(shí)合題意;
②當(dāng)2<a≤3時(shí),t(x)在[0,+)上單調(diào)遞增,且t(x)≥t(0)=3-a≥0即F′(x)≥0
∴F(x)=g′(x)在[0,+)上單調(diào)遞增,又F(0)=g′(0)=2-a<0,
∴必存在x1(0,+),使得x(0,x1)時(shí),
g(x)在(0,x1)上單調(diào)遞減,
∴g(x)<g(0)=0,
這與g(x)≥0在x≥0時(shí)恒成立矛盾,從而當(dāng)2<a≤3時(shí)不合題意;
③當(dāng)a>3時(shí),t(x)在[0,+)上單調(diào)遞增且t(0)=3-a<0,
必存在x2(0,+),使得x(0,x2)時(shí),t(x)<0,即F′(x)<0,從而F(x)=g′(x)在[0,+)上單調(diào)遞減,
∴F(x)<F(0)=g′(0)=2-a<0,
從而g(x)在(0,x1)上單調(diào)遞減 ,
g(x)<g(0)=0,這與g(x)≥0在x≥0時(shí)恒成立矛盾,從而a>3時(shí)不合題意;
綜上:a的取值范圍是(-,2]
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若直線表示兩和不同的直線,則的充要條件是( )
A.存在直線,使,B.存在平面,使,
C.存在平面,使,D.存在直線,使與直線所成的角都是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小趙和小王約定在早上至之間到某公交站搭乘公交車去上學(xué),已知在這段時(shí)間內(nèi),共有班公交車到達(dá)該站,到站的時(shí)間分別為,,如果他們約定見車就搭乘,則小趙和小王恰好能搭乘同一班公交車去上學(xué)的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,國資委.黨委高度重視扶貧開發(fā)工作,堅(jiān)決貫徹落實(shí)中央扶貧工作重大決策部署,在各個(gè)貧困縣全力推進(jìn)定點(diǎn)扶貧各項(xiàng)工作,取得了積極成效,某貧困縣為了響應(yīng)國家精準(zhǔn)扶貧的號(hào)召,特地承包了一塊土地,已知土地的使用面積以及相應(yīng)的管理時(shí)間的關(guān)系如下表所示:
土地使用面積(單位:畝) | 1 | 2 | 3 | 4 | 5 |
管理時(shí)間(單位:月) | 8 | 10 | 13 | 25 | 24 |
并調(diào)查了某村300名村民參與管理的意愿,得到的部分?jǐn)?shù)據(jù)如下表所示:
愿意參與管理 | 不愿意參與管理 | |
男性村民 | 150 | 50 |
女性村民 | 50 |
(1)求出相關(guān)系數(shù)的大小,并判斷管理時(shí)間與土地使用面積是否線性相關(guān)?
(2)是否有99.9%的把握認(rèn)為村民的性別與參與管理的意愿具有相關(guān)性?
(3)若以該村的村民的性別與參與管理意愿的情況估計(jì)貧困縣的情況,則從該貧困縣中任取3人,記取到不愿意參與管理的男性村民的人數(shù)為,求的分布列及數(shù)學(xué)期望。
參考公式:
其中。臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面,,,,點(diǎn)在線段上,且,為線段的中點(diǎn).
(1)求證:平面;
(2)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: 的焦點(diǎn)為,準(zhǔn)線為,三個(gè)點(diǎn), , 中恰有兩個(gè)點(diǎn)在上.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過的直線交于, 兩點(diǎn),點(diǎn)為上任意一點(diǎn),證明:直線, , 的斜率成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐PABCD中,底面ABCD是矩形,點(diǎn)E在棱PC上異于點(diǎn)P,,平面ABE與棱PD交于點(diǎn)F
求證:;
若,求證:平面平面ABCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下是某地區(qū)不同身高的未成年男性的體重平均值表.
身高/ | 60 | 70 | 80 | 90 | 100 | 110 |
體重/ | 6.13 | 7.9 | 9.99 | 12.15 | 15.02 | 17.5 |
身高/ | 120 | 130 | 140 | 150 | 160 | 170 |
體重/ | 20.92 | 26.86 | 31.11 | 38.85 | 42.25 | 55.05 |
(1)給出兩個(gè)回歸方程:
①,②.通過計(jì)算,得到它們的相關(guān)指數(shù)分別是:,.試問哪個(gè)回歸方程擬合效果更好?
(2)若體重超過相同身高男性平均值的1.2倍為偏胖,低于0.8為偏瘦,那么該地區(qū)某中學(xué)一男生身高為,體重為,他的體重是否正常?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓:的左、右焦點(diǎn)分別為,,右頂點(diǎn)為,上頂點(diǎn)為,若,,成等比數(shù)列,橢圓上的點(diǎn)到焦點(diǎn)的距離的最大值為.
求橢圓的標(biāo)準(zhǔn)方程;
過該橢圓的右焦點(diǎn)作兩條互相垂直的弦與,求的取值范圍.
查看答案和解析>>