【題目】如圖,在四棱錐中,底面為直角梯形, ,平面底面 的中點, 是棱上的點, , ,

(Ⅰ)求證:平面平面;

(Ⅱ)若二面角大小為,設,試確定的值.

【答案】(Ⅰ)見解析;(Ⅱ) .

【解析】試題分析:由平面平面,且平面平面 可證得平面,進而平面平面;

先證明, , 兩兩垂直,再以為原點建立空間直角坐標系,利用向量列方程求解即可.

試題解析:

(Ⅰ)證明:∵, , 的中點,

∴四邊形為平行四邊形,∴,

,即

又∵平面平面,且平面平面,

平面,

平面,∴平面平面

(Ⅱ)解:∵, 的中點,∴,

∵平面平面,且平面平面,

平面, , 兩兩垂直,

如圖,以為原點建立空間直角坐標系,則平面的法向量為, , , , ,

,則, ,

,

在平面,

∴平面法向量為

∵二面角,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】十八屆五中全會公報指出:努力促進人口均衡發(fā)展,堅持計劃生育的基本國策,完善人口發(fā)展戰(zhàn)略,全面實施一對夫婦可生育兩個孩子的政策,提高生殖健康、婦幼保健、托幼等公共服務水平.為了解適齡公務員對放開生育二胎政策的態(tài)度,某部門隨機調查了100位30到40歲的公務員,得到情況如下表:

男公務員

女公務員

生二胎

40

20

不生二胎

20

20


(1)是否有95%以上的把握認為“生二胎與性別有關”,并說明理由;
(2)把以上頻率當概率,若從社會上隨機抽取3位30到40歲的男公務員,記其中生二胎的人數(shù)為X,求隨機變量X的分布列,數(shù)學期望.
附:K2=

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中中,曲線的參數(shù)方程為為參數(shù), ). 以坐標原點為極點, 軸正半軸為極軸建立極坐標系,已知直線的極坐標方程為.

(1)設是曲線上的一個動點,當時,求點到直線的距離的最大值;

(2)若曲線上所有的點均在直線的右下方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) ).

(1)若直線和函數(shù)的圖象相切,求的值;

(2)當時,若存在正實數(shù),使對任意都有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按元/度收費,超過200度但不超過400度的部分按元/度收費,超過400度的部分按1.0元/度收費.

(Ⅰ)求某戶居民用電費用(單位:元)關于月用電量(單位:度)的函數(shù)解析式;

(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的占,求, 的值;

(Ⅲ)在滿足(Ⅱ)的條件下,若以這100戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點代替,記為該居民用戶1月份的用電費用,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本公司計劃2008年在甲,乙兩個電視臺做總時間不超過300分鐘的廣告,廣告總費用不超過9萬元,甲,乙電視臺的廣告收費標準分別為500元/分鐘和200元/分鐘,規(guī)定甲,乙兩個電視臺為該公司所做的每分鐘廣告,能給公司事來的收益分別為0.3萬元和0.2萬元,問該公司如何分配在甲,乙兩個電視臺的廣告時間,才能使公司的收益最大,最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知任意角α的終邊經過點P(﹣3,m),且cosα=﹣
(1)求m的值.
(2)求sinα與tanα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|y=2x+1},B={y|y=x2+x+1,x∈R},則A∩B=(
A.{(0,1)∪(1,3)}
B.R
C.(0,+∞)
D.[ ,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,且f(1)=﹣1.
(1)求f(x)的解析式,并判斷它的奇偶性;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調性并證明.

查看答案和解析>>

同步練習冊答案