【題目】如圖四棱柱中,,,M的中點(diǎn).

1)證明:平面

2)若四邊形是菱形,且面,求二面角的余弦值.

【答案】1)證明見解析;(2.

【解析】

1)取的中點(diǎn)N,連接,可證四邊形是平行四邊形,可得,進(jìn)一步可證平面;

2)證明,,兩兩垂直后,以A為原點(diǎn),,,所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,利用平面的法向量可求得結(jié)果.

1)取的中點(diǎn)N,連接,

M的中點(diǎn),∴

, ,所以,

所以四邊形是平行四邊形,

從而,又平面,平面,

所以平面.

2)取的中點(diǎn)P,連接,

∵四邊形為菱形,又,易知.

又面,面,

平面

,兩兩垂直

A為原點(diǎn),,,所在直線分別為xy,z軸建立空間直角坐標(biāo)系(如圖所示),不妨設(shè).

,,,,,

,,

設(shè)平面的法向量為

,得

可得平面的一個(gè)法向量,

設(shè)平面的法向量為

,得,

可得平面的一個(gè)法向量.

所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某品牌電腦體驗(yàn)店預(yù)計(jì)全年購(gòu)入臺(tái)電腦,已知該品牌電腦的進(jìn)價(jià)為/臺(tái),為節(jié)約資金決定分批購(gòu)入,若每批都購(gòu)入為正整數(shù))臺(tái),且每批需付運(yùn)費(fèi)元,儲(chǔ)存購(gòu)入的電腦全年所付保管費(fèi)與每批購(gòu)入電腦的總價(jià)值(不含運(yùn)費(fèi))成正比(比例系數(shù)為),若每批購(gòu)入臺(tái),則全年需付運(yùn)費(fèi)和保管費(fèi).

1)記全年所付運(yùn)費(fèi)和保管費(fèi)之和為元,求關(guān)于的函數(shù).

2)若要使全年用于支付運(yùn)費(fèi)和保管費(fèi)的資金最少,則每批應(yīng)購(gòu)入電腦多少臺(tái)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=,若關(guān)于的方程恰好有 4 個(gè)不相等的實(shí)數(shù)解,則實(shí)數(shù)的取值范圍為( )

A. B. C. D. (0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中).

(1)當(dāng)時(shí),求函數(shù)的圖像在處的切線方程;

(2)若恒成立,求的取值范圍;

(3)設(shè),且函數(shù)有極大值點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在統(tǒng)計(jì)學(xué)中,同比增長(zhǎng)率一般是指和去年同期相比較的增長(zhǎng)率,環(huán)比增長(zhǎng)率一般是指和前一時(shí)期相比較的增長(zhǎng)率.2020229日人民網(wǎng)發(fā)布了我國(guó)2019年國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)圖表,根據(jù)2019年居民消費(fèi)價(jià)格月度漲跌幅度統(tǒng)計(jì)折線圖,下列說(shuō)法正確的是( )

A.2019年我國(guó)居民每月消費(fèi)價(jià)格與2018年同期相比有漲有跌

B.2019年我國(guó)居民每月消費(fèi)價(jià)格中2月消費(fèi)價(jià)格最高

C.2019年我國(guó)居民每月消費(fèi)價(jià)格逐月遞增

D.2019年我國(guó)居民每月消費(fèi)價(jià)格3月份較2月份有所下降

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著網(wǎng)購(gòu)人數(shù)的日益增多,網(wǎng)上的支付方式也呈現(xiàn)一種多樣化的狀態(tài),越來(lái)越多的便捷移動(dòng)支付方式受到了人們的青睞,更被網(wǎng)友們?cè)u(píng)為“新四大發(fā)明”之一.隨著人們消費(fèi)觀念的進(jìn)步,許多人喜歡用信用卡購(gòu)物,考慮到這一點(diǎn),一種“網(wǎng)上的信用卡”橫空出世——螞蟻花唄.這是一款支付寶和螞蟻金融合作開發(fā)的新支付方式,簡(jiǎn)單便捷,同時(shí)也滿足了部分網(wǎng)上消費(fèi)群體在支付寶余額不足時(shí)的“賒購(gòu)”消費(fèi)需求.為了調(diào)查使用螞蟻花唄“賒購(gòu)”消費(fèi)與消費(fèi)者年齡段的關(guān)系,某網(wǎng)站對(duì)其注冊(cè)用戶開展抽樣調(diào)查,在每個(gè)年齡段的注冊(cè)用戶中各隨機(jī)抽取100人,得到各年齡段使用螞蟻花唄“賒購(gòu)”的人數(shù)百分比如圖所示.

1)由大數(shù)據(jù)可知,在1844歲之間使用花唄“賒購(gòu)”的人數(shù)百分比y與年齡x成線性相關(guān)關(guān)系,利用統(tǒng)計(jì)圖表中的數(shù)據(jù),以各年齡段的區(qū)間中點(diǎn)代表該年齡段的年齡,求所調(diào)查群體各年齡段“賒購(gòu)”人數(shù)百分比y與年齡x的線性回歸方程(回歸直線方程的斜率和截距保留兩位有效數(shù)字);

2)該網(wǎng)站年齡為20歲的注冊(cè)用戶共有2000人,試估算該網(wǎng)站20歲的注冊(cè)用戶中使用花唄“賒購(gòu)”的人數(shù);

3)已知該網(wǎng)店中年齡段在18-26歲和27-35歲的注冊(cè)用戶人數(shù)相同,現(xiàn)從1835歲之間使用花唄“賒購(gòu)”的人群中按分層抽樣的方法隨機(jī)抽取8人,再?gòu)倪@8人中簡(jiǎn)單隨機(jī)抽取2人調(diào)查他們每個(gè)月使用花唄消費(fèi)的額度,求抽取的兩人年齡都在1826歲的概率.

參考答案:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)APP軟件層出不窮.現(xiàn)從某市使用A和B兩款訂餐軟件的商家中分別隨機(jī)抽取100個(gè)商家,對(duì)它們的“平均送達(dá)時(shí)間”進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如下.

(1)已知抽取的100個(gè)使用A款訂餐軟件的商家中,甲商家的“平均送達(dá)時(shí)間”為18分鐘,F(xiàn)從使用A款訂餐軟件的商家中“平均送達(dá)時(shí)間”不超過(guò)20分鐘的商家中隨機(jī)抽取3個(gè)商家進(jìn)行市場(chǎng)調(diào)研,求甲商家被抽到的概率;

(2)試估計(jì)該市使用A款訂餐軟件的商家的“平均送達(dá)時(shí)間”的眾數(shù)及平均數(shù);

(3)如果以“平均送達(dá)時(shí)間”的平均數(shù)作為決策依據(jù),從A和B兩款訂餐軟件中選擇一款訂餐,你會(huì)選擇哪款?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸的非負(fù)半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)寫出直線的普通方程和曲線C的直角坐標(biāo)方程;

2)已知定點(diǎn),直線與曲線C分別交于P、Q兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,,分別是橢圓的左、右焦點(diǎn),離心率,過(guò)橢圓右焦點(diǎn)的直線與橢圓交于,兩點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存在直線,使得,若存在,求出直線的方程;若不存在,說(shuō)明理由;

(Ⅲ)設(shè)點(diǎn)是一個(gè)動(dòng)點(diǎn),若直線的斜率存在,且中點(diǎn),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案