已知函數(shù)y=f(x)=2
3
sinxcos+2cos2x+a(x∈R),其中a為常數(shù).
(1)求函數(shù)y=f(x)的周期;
(2)如果y=f(x)的最小值為0,求a的值,并求此時f(x)的最大值及圖象的對稱軸方程.
考點:三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法
專題:計算題
分析:(1)先利用倍角公式對函數(shù)解析式化簡,求得函數(shù)的周期.
(2)利用(1)中的解析式及f(x)的值求得a,求得函數(shù)解析式,最后根據(jù)三角函數(shù)的性質(zhì)求得答案.
解答: 解(1)y=1+cos2x+
3
sin2x+a=2sin(2x+
π
6
)+a+1
∴T=
2

(2)∵f(x)的最小值為0,
∴-2+a+1=0  
∴a=1
∴函數(shù)y=2sin(2x+
π
6
)+2最大值等于為2+2=4
當(dāng)2x+
π
6
=kπ+
π
2
(k∈Z),即x=
2
+
π
6
(k∈Z)時函數(shù)有最大值或最小值,
∴函數(shù)f(x)的圖象的對稱軸方程為x=
2
+
π
6
(k∈Z).
點評:本題主要考查三角函數(shù)的周期,三角函數(shù)的圖象及三角函數(shù)恒等變換的運用.考查了學(xué)生對三角函數(shù)基礎(chǔ)知識的綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={(x,y)|
x2
9
+
y2
4
=1},N={(x,y)|y=k(x-b)},若?k∈R,使得M∩N=∅成立,則實數(shù)b的取值范圍是( 。
A、[-3,3]
B、(-∞,-3)∪(3,+∞)
C、[-2,2]
D、(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p:x2-8x-20≤0,q:x2-2x+1-m2≤0(m>0),且?q是?p的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:函數(shù)f(x)=-x2+4x在(2,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求函數(shù)y=
2+log
1
2
x
+
tanx
的定義域
(2)設(shè)g(x)=cos(sinx),(0≤x≤π),求g(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f﹙x﹚(x∈R)滿足f﹙x+2﹚=-f﹙x﹚,求證:4是f﹙x﹚的一個周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明函數(shù)g(x)=
ex+e-x
2
的奇偶性,并求定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
x+2y≥2
2x+y≤4
4x-y≥-1
,則目標(biāo)函數(shù)z=2x-y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

矩形ABCD中,AB=6,BC=2
3
,沿對角線BD將三角形ABD向上折起,使A移至點P,且P在平面BCD的射影O在DC上,則二面角P-BD-C的平面角的余弦值是
 

查看答案和解析>>

同步練習(xí)冊答案