【題目】已知函數(shù)是定義在上的奇函數(shù),對于任意,總有.若對于任意,存在,使成立,則實(shí)數(shù)的取值范圍是(

A. B.

C. D.

【答案】D

【解析】

由條件先判斷函數(shù)的單調(diào)性,利用奇偶性和單調(diào)性的性質(zhì)將不等式轉(zhuǎn)化fxmint22at1成立,構(gòu)造函數(shù)ga)即可得到結(jié)論.

fx)是定義在[1,1]上的奇函數(shù),

∴當(dāng)x1、x2[11],且x1+x2≠0時,有0,

∴函數(shù)fx)在[1,1]上單調(diào)遞增.

f1)=1,

fx)的最小值為f(﹣1)=﹣f1)=﹣1,最大值為f1)=1,

若對于任意a[1,1],存在x[11],使fxt22at1成立,

t22at1≥1對所有a[11]恒成立,

t22at≥0

設(shè)ga)=t22at=﹣2ta+t2,

則滿足

,

t≥2t2t0,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù).

(1) 若,求曲線處的切線方程;

(2)求函數(shù)單調(diào)區(qū)間

(3) 若有兩個零點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=axcosx,a≠0

1)若函數(shù)fx)為單調(diào)函數(shù),求a的取值范圍;

2)若x∈[02π],求:當(dāng)a時,函數(shù)fx)僅有一個零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義首項為1且公比為正數(shù)的等比數(shù)列為“M-數(shù)列”.

1)已知等比數(shù)列{an}滿足:,求證:數(shù)列{an}為“M-數(shù)列”;

2)已知數(shù)列{bn}滿足:,其中Sn為數(shù)列{bn}的前n項和.

①求數(shù)列{bn}的通項公式;

②設(shè)m為正整數(shù),若存在“M-數(shù)列”{cn},對任意正整數(shù)k,當(dāng)km時,都有成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下說法正確的是(

A.命題的否定是,

B.命題互為倒數(shù),則的逆命題為真

C.命題,都是偶數(shù),則是偶數(shù)的否命題為真

D.的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在拋物線上,則當(dāng)點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時,點(diǎn)的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p,;命題q:方程表示雙曲線.

⑴若命題p為真命題,求實(shí)數(shù)m的取值范圍;

⑵若命題為真命題,為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩隊進(jìn)行防溺水專題知識競賽,每隊3人,首輪比賽每人一道必答題,答對者則為本隊得1分,答錯或不答得0分,己知甲隊每人答對的概率分別為,,乙隊每人答對的概率均為.設(shè)每人回答正確與否互不影響,用表示首輪比賽結(jié)束后甲隊的總得分.

1)求隨機(jī)變量的分布列;

2)求在首輪比賽結(jié)束后甲隊和乙隊得分之和為2的條件下,甲隊比乙隊得分高的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案