分析:(1)由函數(shù)圖象的平移求出函數(shù)g(x)=
1-的增區(qū)間,取絕對(duì)值后得到f(x)的增區(qū)間;
(2)分0≤x≤t和x>t把原函數(shù)去絕對(duì)值,求導(dǎo)后利用導(dǎo)函數(shù)的符號(hào)得到原函數(shù)的單調(diào)性,求得函數(shù)的極值,結(jié)合端點(diǎn)值可得f(x)在區(qū)間[0,6]上的最大值為g(t);
(3)由(1)知,當(dāng)t≥6時(shí),f(x)在(0,6)上單調(diào)遞減,不滿足要求;當(dāng)0<t<6時(shí),f(x)在(0,t)上單調(diào)遞減,在(t,6)上單調(diào)遞增.設(shè)出區(qū)間(0,6)內(nèi)的圖象上的兩點(diǎn)(x
1,f(x
1)),(x
2,f(x
2)),把在該兩點(diǎn)處的切線互相垂直轉(zhuǎn)化為集合T={x|3t<x<4t}與集合B={x|
<x<1}的交集非空,由此列不等式求得t的取值范圍.
解答:
解:(1)當(dāng)t=1時(shí),f(x)=|
|=|
1-|,
函數(shù)g(x)=
1-的增區(qū)間為(-∞,-3),(-3,+∞),
且x∈(-3,1)時(shí)g(x)<0,
∴f(x)的增區(qū)間為(-∞,-3),(1,+∞);
(2)當(dāng)0≤x≤t時(shí),f(x)=
;當(dāng)x>t時(shí),f(x)=
.
因此,當(dāng)x∈(0,t)時(shí),f′(x)=
<0,f(x)在(0,t)上單調(diào)遞減;
當(dāng)x∈(t,+∞)時(shí),f′(x)=
>0,f(x)在(t,+∞)上單調(diào)遞增.
①若t≥6,則f(x)在(0,6)上單調(diào)遞減,g(t)=f(0)=
.
②若0<t<6,則f(x)在(0,t)上單調(diào)遞減,在(t,6)上單調(diào)遞增.
∴g(t)=max{f(0),f(6)}.
而f(0)-f(6)=
-=,
故當(dāng)0<t≤2時(shí),g(t)=f(6)=
;
當(dāng)2<t<6時(shí),g(t)=f(0)=
.
綜上所述,g(t)=
;
(3)由(1)知,當(dāng)t≥6時(shí),f(x)在(0,6)上單調(diào)遞減,不滿足要求;
當(dāng)0<t<6時(shí),f(x)在(0,t)上單調(diào)遞減,在(t,6)上單調(diào)遞增.
若存在x
1,x
2∈(0,6)(x
1<x
2),使曲線y=f(x)在(x
1,f(x
1)),(x
2,f(x
2))兩點(diǎn)處的切線互相垂直,
則x
1∈(0,t),x
2∈(t,6),且f(x
1)•f(x
2)=-1,
即
•=-1,亦即
x1+3t=,
由x
1∈(0,t),x
2∈(t,6),得
x1+3t∈(3t,4t),∈(,1),
故
x1+3t=等價(jià)于集合T={x|3t<x<4t}與集合B={x|
<x<1}的交集非空.
∵
<4t,
∴當(dāng)且僅當(dāng)0<3t<1,即0<t<
時(shí),T∩B≠∅.
綜上所述,存在t使函數(shù)y=f(x)在區(qū)間(0,6)內(nèi)的圖象上存在兩點(diǎn),在該兩點(diǎn)處的切線互相垂直,
且t的取值范圍是
(0,).