從10位學生中選出5人參加數(shù)學競賽.
(1)甲必須選入的有多少種不同的選法?
(2)甲、乙、丙不能同時都入選的有多少種不同的選法?
考點:排列、組合及簡單計數(shù)問題
專題:排列組合
分析:(1)學甲入選,再從剩下的9人選4,問題得以解決.
(2)利用間接法,先求出沒有限制條件的,再排除甲、乙、丙同時都入選,問題得以解決
解答: 解:(1)學甲入選,再從剩下的9人選4,故甲必須選入的有C94=126種不同選法,
(2)沒有限制條件的選擇方法有C105=252種,甲、乙、丙同時都入選有C72=21種,
故甲、乙、丙不能同時都入選的有252-21=231.
點評:本題考查排列、組合的應用,是簡單題,注意分類討論、正確計算即可.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知{an}為等差數(shù)列,其前n項和為Sn,若a3=6,S3=12,則S12等于( 。
A、288B、90
C、156D、126

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知極坐標的極點與平面直角坐標系的原點重合,極軸與x軸的正半軸重合,且長度單位相同,圓C的參數(shù)方程為
x=1+2cosα
y=
3
+2sinα
(α為參數(shù)),點Q的極坐標為(4,-
3
).
(Ⅰ)寫出圓C的直角坐標方程和極坐標方程;
(Ⅱ)已知點P是圓C上的任意一點,求P,Q兩點間距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,側棱PD⊥底面ABCD,PD=CD,AB=4,BC=3,E是PD的中點.
(1)證明:PB∥平面ACE
(2)若Q為直線PB上任意一點,求幾何體Q-ACE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解不等式:x2-x-2>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖:內(nèi)接于⊙O的△ABC的兩條高線AD、BE相交于點H,過圓心O作OF⊥BC于 F,連接AF交OH于點G,并延長CO交圓于點I.
(1)若
OF
AH
,試求λ的值;
(2)若
CH
=x
OA
+y
OB
,試求x+y的值;
(3)若O為原點,點B的坐標為(-4,-3),點C的坐標為C(4,-3),試求點G的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在△ABC中,點M是BC的中點,設
AB
=
a
,
AC
=
b
,點N在AC上,且AN=2NC,AM與BN相交于點P,AP=λAM,求
(1)λ的值;
(2)用
a
b
表示
AP

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓錐曲線E的兩個焦點坐標是F1(-
2
,0),F(xiàn)2
2
,0),且離心率為e=
2
;
(Ⅰ)求曲線E的方程;
(Ⅱ)設曲線E表示曲線E的y軸左邊部分,若直線y=kx-1與曲線E相交于A,B兩點,求k的取值范圍;
(Ⅲ)在條件(Ⅱ)下,如果|
AB
|=6
3
,且曲線E上存在點C,使
OA
+
OB
=m
OC
,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“解方程(
3
5
x+(
4
5
x=1”有如下思路:構造函數(shù)f(x)=(
3
5
x+(
4
5
x,易知f(x)在R上單調遞減,且f(2)=1,故原方程有唯一解x=2,類比上述解題思路,不等式x6-(x+2)>(x+2)3-x2的解集是
 

查看答案和解析>>

同步練習冊答案