正三角形ABC的邊長為1,且
BC
=
a
CA
=
b
AB
=
c
,求|
a
-
b
+2
c
|
的值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:利用等邊三角形的性質(zhì)和數(shù)量積運(yùn)算可得
a
b
a
c
b
c
,再利用數(shù)量積的性質(zhì)即可得出.
解答: 解:
a
b
的夾角=π-
π
3
=
3

a
b
=|
a
| |
b
|
cos
3
=-
1
2

同理
b
c
=-
1
2
,
a
c
=-
1
2
,
|
a
-
b
+2
c
|2=
a
2
+
b
2
+4
c
2
-2
a
b
+4
a
c
-4
b
c
=7

|
a
-
b
+2
c
|=
7
點(diǎn)評:本題考查了等邊三角形的性質(zhì)、數(shù)量積運(yùn)算及其性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,-3),
b
=(-1,2),
c
=(2,8)
(Ⅰ)若
c
=x
a
+y
b
,求x,y的值;
(Ⅱ)若
d
=3
a
+5
b
,求向量
a
與向量
d
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的圖象的一部分如圖,已知函數(shù)與x軸交于點(diǎn)P(-2,0)和(6,0),點(diǎn)M,N分別是最高點(diǎn)和最低點(diǎn),且∠MPN=
π
2

(Ⅰ)求函數(shù)f(x)表達(dá)式;
(Ⅱ)若f(x0+
10
3
)=
3
,求sin(
π
4
x0-
π
6
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:ax-y=0在矩陣A=[
01
12
]對應(yīng)的變換作用下得到直線l′,若直線l′過點(diǎn)(1,1),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若過橢圓
x2
12
+
y2
3
=1內(nèi)一點(diǎn)(2,1)的弦被該點(diǎn)平分,求該弦所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1=2Sn+1(n≥1).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)在數(shù)列{bn}中,bn=an•log3an,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為
x=1-cosα
y=cosα
(α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立的極坐標(biāo)系中,曲線C2的方程為ρ=2sinθ.
(Ⅰ)求C1和C2的普通方程:
(Ⅱ)求C1和C2公共弦的垂直平分線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

福建女排與江西女排舉行對抗賽,比賽采用五局三勝制,即先勝三局的隊(duì)獲勝.單局比賽福建女排勝江西女排的概率為
3
5
且各局比賽相互之間沒有影響,已知比賽中,江西女排先勝了第一局.求:
(1)福建女排在這種情況下取勝的概率; 
(2)設(shè)比賽局?jǐn)?shù)為ξ,求P(ξ=4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,該程序運(yùn)行后,輸出的x值為31,則a=
 
;

查看答案和解析>>

同步練習(xí)冊答案