9.關于x的函數(shù)y=ax,y=xa,y=loga(x-1),其中a>0,a≠1,在第一象限內的圖象只可能是( 。
A.B.C.D.

分析 利用賦值法,分析判斷函數(shù)的圖象即可.

解答 解:令a=2,則函數(shù)y=ax,y=xa,y=loga(x-1),化為:函數(shù)y=2x,y=x2,y=log2(x-1),
三個函數(shù)的圖象只有B滿足;
當a=$\frac{1}{2}$時,函數(shù)y=ax,y=xa,y=loga(x-1),化為函數(shù)y=($\frac{1}{2}$)x,y=x$\frac{1}{2}$,y=log$\frac{1}{2}$(x-1),分別為減函數(shù)、增函數(shù)、減函數(shù),沒有圖象滿足題意.
故選:B.

點評 本題考查函數(shù)的圖象的判斷,賦值法的應用,掌握常見函數(shù)的圖象與性質,是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.過點C(0,$\sqrt{2}$)的橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,橢圓與x軸交于兩點A(a,0),B(-a,0),過點C的直線l與橢圓交于另一點D,并與x軸交于點P,直線AC與BD交于點Q.
(1)求橢圓的方程;
(2)當直線l過橢圓右焦點時,求線段CD的長;
(3)當點P異于點B時,求證:$\overrightarrow{OP}$•$\overrightarrow{OQ}$為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知等差數(shù)列{an}的首項為c,公差為d,等比數(shù)列{bn}的首項為d,公比為c,其中c,d∈Z,且a1<b1<a2
b2<a3
(1)求證:0<c<d,并由b2<a3推導c的值;
(2)若數(shù)列{an}共有3n項,前n項的和為A,其后的n項的和為B,再其后的n項的和為C,求$\frac{{B}^{2}-AC}{(A-C)^{2}}$的比值.
(3)若數(shù)列{bn}的前n項,前2n項、前3n項的和分別為D,G,H,試用含字母D,G的式子來表示H(即H=f(D,G),且不含字母d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知拋物線y2=4x的焦點為F,過點F且傾斜角為45°的直線l與拋物線分別交于A、B兩點,則|AB|=( 。
A.3B.6C.8D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.a=log20.7,b=($\frac{1}{5}$)${\;}^{\frac{2}{3}}$,c=($\frac{1}{2}$)-3,則a,b,c的大小關系是(  )
A.c>b>aB.b>c>aC.c>a>bD.a>b>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}+2\overrightarrow=0$,($\overrightarrow{a}+\overrightarrow$)$•\overrightarrow{a}$=2,則$\overrightarrow{a}•\overrightarrow$=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.計算log324-log38的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若命題p:?x∈A,2x∈B,則( 。
A.¬p:?x0∈A,2x0∈BB.¬p:?x0∉A,2x0∈BC.¬p:?x0∈A,2x0∉BD.¬p:?x∉A,2x∉B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.為了應對日益嚴重的氣候問題,某氣象儀器科研單位研究出一種新的“彈射型”氣候儀器,這種儀器可以彈射到空中進行氣候觀測,如圖所示,A,B,C三地位于同一水平面上,這種儀器在C地進行彈射實驗,觀測點A,B兩地相距100米,∠BAC=60°,在A地聽到彈射聲音比B地晚$\frac{2}{17}$秒(已知聲音傳播速度為340米/秒),在A地測得該儀器至高點H處的仰角為30°,則這種儀器的垂直彈射高度HC=140$\sqrt{3}$米.

查看答案和解析>>

同步練習冊答案