【題目】已知四邊形為矩形,平面,連接,,,,則下列各組向量中,數(shù)量積不為零的是(

A.B.C.D.

【答案】A

【解析】

根據(jù)題意,若空間非零向量的數(shù)量積為0,則這兩個(gè)向量必然互相垂直.據(jù)此依次分析選項(xiàng),判定所給的向量是否垂直,即可得答案.

作出草圖:

根據(jù)題意,依次分析選項(xiàng): 對(duì)于A不一定垂直,即向量 ,則向量 的數(shù)量積不一定為0

對(duì)于B,根據(jù)題意,有平面,則,又由,則有平面,進(jìn)而有,即向量 一定垂直,則向量 的數(shù)量積一定為0;

對(duì)于C,根據(jù)題意,有平面,則,又由,則有平面,進(jìn)而有,即向量一定垂直,則向量 的數(shù)量積一定為0;

對(duì)于D,根據(jù)題意,有平面,則,即向量 一定垂直,則向量的數(shù)量積一定為0;故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面是平行四邊形,,側(cè)面底面, ,,分別為,的中點(diǎn),過(guò)的平面與面交于,兩點(diǎn).

(1)求證:;

(2)求證:平面平面;

(3)設(shè),當(dāng)為何值時(shí)四棱錐的體積等于,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】司機(jī)在開(kāi)機(jī)動(dòng)車(chē)時(shí)使用手機(jī)是違法行為,會(huì)存在嚴(yán)重的安全隱患,危及自己和他人的生命. 為了研究司機(jī)開(kāi)車(chē)時(shí)使用手機(jī)的情況,交警部門(mén)調(diào)查了名機(jī)動(dòng)車(chē)司機(jī),得到以下統(tǒng)計(jì):在名男性司機(jī)中,開(kāi)車(chē)時(shí)使用手機(jī)的有人,開(kāi)車(chē)時(shí)不使用手機(jī)的有人;在名女性司機(jī)中,開(kāi)車(chē)時(shí)使用手機(jī)的有人,開(kāi)車(chē)時(shí)不使用手機(jī)的有人.

(1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為開(kāi)車(chē)時(shí)使用手機(jī)與司機(jī)的性別有關(guān);

開(kāi)車(chē)時(shí)使用手機(jī)

開(kāi)車(chē)時(shí)不使用手機(jī)

合計(jì)

男性司機(jī)人數(shù)

女性司機(jī)人數(shù)

合計(jì)

(2)以上述的樣本數(shù)據(jù)來(lái)估計(jì)總體,現(xiàn)交警部門(mén)從道路上行駛的大量機(jī)動(dòng)車(chē)中隨機(jī)抽檢3輛,記這3輛車(chē)中司機(jī)為男性且開(kāi)車(chē)時(shí)使用手機(jī)的車(chē)輛數(shù)為,若每次抽檢的結(jié)果都相互獨(dú)立,求的分布列和數(shù)學(xué)期望

參考公式與數(shù)據(jù):

參考數(shù)據(jù):

參考公式

,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年開(kāi)始,國(guó)家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科為必考科目,滿(mǎn)分各150分,另外考生還要依據(jù)想考取的高校及專(zhuān)業(yè)的要求,結(jié)合自己的興趣愛(ài)好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門(mén)科目中自選3門(mén)參加考試(6選3),每科目滿(mǎn)分100分.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1000名學(xué)生(其中男生550人,女生450人)中,根據(jù)性別分層,采用分層抽樣的方法從中抽取100名學(xué)生進(jìn)行調(diào)查.

(1)學(xué)校計(jì)劃在高一上學(xué)期開(kāi)設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)抽取到的100名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),如表是根據(jù)調(diào)查結(jié)果得到的2×2列聯(lián)表.請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;

(2)在抽取到的女生中按(1)中的選課情況進(jìn)行分層抽樣,從中抽出9名女生,再?gòu)倪@9名女生中隨機(jī)抽取4人,設(shè)這4人中選擇“地理”的人數(shù)為,求的分布列及數(shù)學(xué)期望.

選擇“物理”

選擇“地理”

總計(jì)

男生

10

女生

25

總計(jì)

附參考公式及數(shù)據(jù):,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐的底面為邊長(zhǎng)為的菱形,中點(diǎn),連接.

(Ⅰ)求證:平面平面

(Ⅱ)若平面平面,且二面角的余弦值為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了解用戶(hù)對(duì)其產(chǎn)品的滿(mǎn)意度,從兩地區(qū)分別隨機(jī)調(diào)查了40個(gè)用戶(hù),根據(jù)用戶(hù)對(duì)產(chǎn)品的滿(mǎn)意度評(píng)分,得到地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的頻率分布直方圖和地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的頻數(shù)分布表.

地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的頻率分布直方圖如下:

地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的頻數(shù)分布表如下:

1)在圖中作出地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的頻率分布直方圖,并通過(guò)直方圖比較兩地區(qū)滿(mǎn)意度評(píng)分的平均值及分散程度(不要求計(jì)算出具體值,給出結(jié)論即可).

地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的頻率分布直方圖

2)根據(jù)用戶(hù)滿(mǎn)意度評(píng)分,將用戶(hù)的滿(mǎn)意度分為三個(gè)等級(jí):

公司負(fù)責(zé)人為了解用戶(hù)滿(mǎn)意度情況,從B地區(qū)調(diào)查8戶(hù),其中有兩戶(hù)滿(mǎn)意度等級(jí)是不滿(mǎn)意.求從這8戶(hù)中隨機(jī)抽取2戶(hù)檢查,抽到不滿(mǎn)意用戶(hù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于一個(gè)向量組,令,如果存在,使得,那么稱(chēng)是該向量組的“長(zhǎng)向量”

1)若是向量組的“長(zhǎng)向量”,且,求實(shí)數(shù)的取值范圍;

2)已知,均是向量組的“長(zhǎng)向量”,試探究,,的等量關(guān)系并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】語(yǔ)文中回文句,如:“黃山落葉松葉落山黃,西湖垂柳絲柳垂湖西.”,倒過(guò)來(lái)讀完全一樣,數(shù)學(xué)中也有類(lèi)似現(xiàn)象,無(wú)論從左往右讀,還是從右往左讀,都是同一個(gè)數(shù),稱(chēng)這樣的數(shù)為回文數(shù)”!二位的回文數(shù)有1122,3344,55,66,77,88,99,共9個(gè);三位的回文數(shù)有101,111,121131,,969,979,989999,共90個(gè);四位的回文數(shù)有10011111,1221,,9669,9779,9889,999,共90個(gè);五位的回文數(shù)有10001,11111,12221,,96669,97779,98889,99999900個(gè),由此推測(cè):10位的回文數(shù)總共有_______個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線(xiàn)的極坐標(biāo)方程為曲線(xiàn)的參數(shù)方程是為參數(shù)).

(1)求直線(xiàn)和曲線(xiàn)的普通方程;

(2)設(shè)直線(xiàn)和曲線(xiàn)交于兩點(diǎn),求

查看答案和解析>>

同步練習(xí)冊(cè)答案