5.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在[0,+∞)上單調(diào)遞增,若f(-1)=0,則不等式f(2x-1)>0解集為( 。
A.(-∞,0)∪(1,+∞)B.(-6,0)∪(1,3)C.(-∞,1)∪(3,+∞)D.(-∞,-1)∪(3,+∞)

分析 根據(jù)函數(shù)奇偶性和單調(diào)性的關系進行轉(zhuǎn)化即可.

解答 解:∵f(-1)=0,
∴不等式f(2x-1)>0等價為f(2x-1)>f(-1),
∵f(x)是定義在R上的偶函數(shù),且在[0,+∞)上單調(diào)遞增,
∴不等式等價為f(|2x-1|)>f(1),
即|2x-1|>1,
即2x-1>1或2x-1<-1,
即x>1或x<0,
則不等式的解集為(-∞,0)∪(1,+∞),
故選:A.

點評 本題主要考查不等式的求解,利用函數(shù)奇偶性和單調(diào)性的性質(zhì)進行轉(zhuǎn)化是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)$f(x)=\frac{px+q}{{{x^2}+1}}$(p,q為常數(shù))是定義在(-1,1)上的奇函數(shù),且$f(1)=\frac{1}{2}$.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)判斷并用定義證明f(x)在(-1,1)上的單調(diào)性;
(Ⅲ)解關于x的不等式f(2x-1)+f(x)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.直線l:y-3=k(x+1)必經(jīng)過定點(-1,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,則f($\frac{1}{11}$)+f($\frac{2}{11}$)+…+f($\frac{10}{11}$)的值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列給出的各組對象中,不能成為集合的是( 。
A.接近2的所有數(shù)B.方程x2-1=0的所有實數(shù)根
C.所有的等邊三角形D.小于10的所有自然數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.下列分別為集合A到集合B的對應:其中,是從A到B的映射的是( 。
A.(1)(2)B.(1)(2)( 3)C.(1)(2)(4)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.某游輪在A處看燈塔B在A的北偏東75°,距離為12$\sqrt{6}$海里,燈塔C在A的北偏西30°,距離為8$\sqrt{3}$海里,游輪由A向正北方向航行到D處時再看燈塔B在南偏東60°則C與D的距離為(  )
A.20海里B.8$\sqrt{3}$海里C.23$\sqrt{2}$海里D.24海里

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.對任意的實數(shù)m,直線y=mx+n-1與橢圓x2+4y2=1恒有公共點,則n的取值范圍是( 。
A.$[\frac{1}{2},\frac{3}{2}]$B.$(\frac{1}{2},\frac{3}{2})$C.$[-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}]$D.$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知命題p:$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{3}$=1是焦點在x軸上的橢圓,命題q:x2-mx+1=0有兩個不相等的實數(shù)根.若p∧q為真命題,求m的取值范圍.

查看答案和解析>>

同步練習冊答案