設(shè)函數(shù)f(x)=|x+2|+|2x-a|(a∈R).
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)y=f(x)的值域;
(Ⅱ)當(dāng)a<-4時(shí),存在x≤-2,使得f(x)-x≤4成立,求實(shí)數(shù)a的取值范圍.
考點(diǎn):絕對(duì)值不等式的解法
專題:不等式的解法及應(yīng)用
分析:(Ⅰ)當(dāng)a=2時(shí),去掉絕對(duì)值化簡(jiǎn)函數(shù)的解析式為f(x)=
-3x , x<-2 
-x+4 , -2≤x<1 
3x , x≥1
,由此求得函數(shù)y=f(x)的值域.
(Ⅱ)當(dāng)a<-4時(shí),f(x)-x=
-4x+a-2 , x<
a
2
-2-a , 
a
2
≤x≤-2
,由題意可得所以4≥[f(x)-x]min=-2-a,由此求得實(shí)數(shù)a的取值范圍.
解答: 解:(Ⅰ)當(dāng)a=2時(shí),f(x)=|x+2|+2|x-1|=
-3x , x<-2 
-x+4 , -2≤x<1 
3x , x≥1
,
所以f(x)min=f(1)=3,函數(shù)f(x)沒(méi)有最大值,
所以函數(shù)y=f(x)的值域是[3,+∞).
(Ⅱ)當(dāng)a<-4時(shí),f(x)-x=
-4x+a-2 , x<
a
2
-2-a , 
a
2
≤x≤-2
,
因存在x≤-2,使得f(x)-x≤4成立,
所以4≥[f(x)-x]min=-2-a,即-6≤a<-4,所以實(shí)數(shù)a的取值范圍是[-6,-4).
點(diǎn)評(píng):本題主要考查絕對(duì)值不等式的解法,求函數(shù)的最值,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x3+4x2-5x在區(qū)間[-1,1]上(  )
A、有3個(gè)零點(diǎn)B、有2個(gè)零點(diǎn)
C、有1個(gè)零點(diǎn)D、沒(méi)有零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下命題
①若cosαcosβ=1,則sin(α+β)=0;
②已知直線x=m與函數(shù)f(x)=sinx,g(x)=sin(
π
2
-x)的圖象分別交于M,N兩點(diǎn),則|MN|的最大值為
2

③若A,B是△ABC的兩內(nèi)角,如果A>B,則sinA>sinB;
④若A,B是銳角△ABC的兩內(nèi)角,則sinA>cosB.
其中正確的有( 。﹤(gè).
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國(guó)PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級(jí);在35-75微克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米及其以上空氣質(zhì)量為超標(biāo).某試點(diǎn)城市環(huán)保局從該市市區(qū)2013年3月每天的PM2.5監(jiān)測(cè)數(shù)據(jù)中隨機(jī)抽取6天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值如莖葉圖所示(十位為莖,個(gè)位為葉),
(Ⅰ)求該組數(shù)據(jù)的平均數(shù)和方差;
(Ⅱ)記ξ表示兩天中空氣質(zhì)量為二級(jí)的天數(shù).求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD,側(cè)面PAD⊥底面ABCD,ABCD是直角梯形,△PAD為正三角形,DA⊥AB,CB⊥AB,AB=AD=1,BC=2,E為BC的中點(diǎn),M為側(cè)棱PB上一點(diǎn).
(Ⅰ)求直線PC與平面PAD所成的角;
(Ⅱ)是否存在點(diǎn)M使直線BD⊥平面MAE?若存在,求出
PM
MB
的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD為圓內(nèi)接四邊形,從它的一個(gè)頂點(diǎn)A引平行于CD的弦AP交圓于P,并且分別交BC,BD于Q,R.求證:
AB•CD
AD•BC
=
RQ
PQ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)首項(xiàng)為a1,公差為d的等差數(shù)列{an}的前n項(xiàng)和為Sn.已知a7=-2,S5=30.
(Ⅰ)求a1及d;
(Ⅱ)若數(shù)列{bn}滿足an=
b1+2b2+3b3+…+nbn
n2
(n∈N*),求數(shù)列{bn}的通項(xiàng)公式,并bn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)與橢圓
x2
5
+
y2
4
=1的右焦點(diǎn)F重合,過(guò)點(diǎn)F斜率為2
2
的直線與拋物線交于A,B兩點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀下面材料:根據(jù)兩角和與差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ----------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=B有α=
A+B
2
,β=
A-B
2
代入③得 sinA+sinB=2sin
A+B
2
cos
A-B
2

(1)利用上述結(jié)論,試求sin15°+sin75°的值.
(2)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2

查看答案和解析>>

同步練習(xí)冊(cè)答案