等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=3,前n項(xiàng)和為Sn,{bn}為等比數(shù)列,b1=1,且b2S2=64,b3S3=960.
(1)求an與bn
(2)若不等式
1
S1
+
1
S2
+…+
1
Sn
m-2010
4
對(duì)n∈N*成立,求最小正整數(shù)m的值.
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)由條件建立方程組即可求出數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)利用裂項(xiàng)法先求出數(shù)列的和,然后再解不等式即可.
解答: 解:(1)設(shè){an}的公差為d,{bn}的公比為q,則d為正整數(shù),an=3+(n-1)d,bn=qn-1,
∵b2S2=64,b3S3=960.
S3b3=(9+3d)q2=960
S2b2=(6+d)q=64
,
解得
d=2
q=8
,或
d=-
6
5
q=
40
3
(舍去),
an=3+2(n-1)=2n+1,bn=8n-1
(2)∵Sn=3+5+…+(2n+1)=n(n+2),
1
S1
+
1
S2
+…+
1
Sn
=
1
1×3
+
1
2×4
+
1
3×5
+…+
1
n(n+2)
=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)
=
3
4
-
2n+3
2(n+1)(n+2)
3
4
m-2010
4

解得m≥2013,
∴所求m的最小正整數(shù)是2013.
點(diǎn)評(píng):本題主要考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式的計(jì)算,以及利用裂項(xiàng)法進(jìn)行求和的知識(shí),考查學(xué)生的計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)學(xué)趣味知識(shí)培訓(xùn)活動(dòng)中,甲、乙兩名學(xué)生的6次培訓(xùn)成績?nèi)缜o葉圖所示:
(Ⅰ)從甲、乙兩人中選擇1人參加數(shù)學(xué)趣味知識(shí)競(jìng)賽,你會(huì)選哪位?請(qǐng)運(yùn)用統(tǒng)計(jì)學(xué)的知識(shí)說明理由:
(Ⅱ)從乙的6次培訓(xùn)成績中隨機(jī)選擇2個(gè),記被抽到的分?jǐn)?shù)超過115分的個(gè)數(shù)為ξ,試求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sinx+
x
在區(qū)間[0,+∞)內(nèi)( 。
A、沒有零點(diǎn)
B、有且僅有1個(gè)零點(diǎn)
C、有且僅有2個(gè)零點(diǎn)
D、有且僅有3個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(x-1)6=a6x6+a5x5+…+a2x2+a1x+a0,則函數(shù)f(x)=a2x2+a1x+a0的增函數(shù)區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sinα-2cosα=0,則2sin2α-3sinαcosα-5cos2α+2的值為( 。
A、
5
3
B、-
1
3
C、
7
5
D、-
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的各項(xiàng)都是正數(shù),前n項(xiàng)和為Sn,且對(duì)任意n∈N+,都有a
 
3
1
+a
 
3
2
+a
 
3
3
+…+a
 
3
n
=S
 
2
n

(1)求證:a
 
2
n
=2Sn-an;     
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某足球俱樂部2013年10月份安排4次體能測(cè)試,規(guī)定:按順序測(cè)試,一旦測(cè)試合格就不必參加以后的測(cè)試,否則4次測(cè)試都要參加.若運(yùn)動(dòng)員小李4次測(cè)試每次合格的概率組成一個(gè)公差為
1
8
的等差數(shù)列,他第一次測(cè)試合格的概率不超過
1
2
,且他直到第二次測(cè)試才合格的概率為
9
32

(1)求小李第一次參加測(cè)試就合格的概率P1;
(2)求小李10月份參加測(cè)試的次數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知遞增的等比數(shù)列{bn}(n∈N*)滿足b3+b5=40,b3•b5=256,則數(shù)列{bn}的前10項(xiàng)和S10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足
x≥1
y≥0
x+2y-5≤0
x+2y-3≥0
,則x+y的最小值為( 。
A、1B、2C、-1D、-2

查看答案和解析>>

同步練習(xí)冊(cè)答案