【題目】已知數(shù)列{an}滿足an+1=2an+n﹣1,且a1=1.
(Ⅰ)求證:{an+n}為等比數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項和Sn .
【答案】(Ⅰ)證明:∵an+1=2an+n﹣1,
∴ = =2,
∴數(shù)列{an+n}為等比數(shù)列;
(Ⅱ)解:∵a1+1=2,
∴數(shù)列{an+n}是首項、公比均為2的等比數(shù)列,
∴an+n=2n , 即an=﹣n+2n ,
∴Sn=﹣(1+2+…+n)+(21+22+…+2n)
=﹣ +
=2n+1﹣ ﹣2
【解析】(Ⅰ)利用an+1=2an+n﹣1化簡 即得結(jié)論;(Ⅱ)通過a1=1可知數(shù)列{an+n}是首項、公比均為2的等比數(shù)列,進(jìn)而可求出數(shù)列{an}的通項公式,進(jìn)而利用分組法求和計算即得結(jié)論.
【考點精析】掌握等比數(shù)列的通項公式(及其變式)和數(shù)列的前n項和是解答本題的根本,需要知道通項公式:;數(shù)列{an}的前n項和sn與通項an的關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)y=sin2x的圖象,可由函數(shù) ( )
A.向左平移 個長度單位
B.向右平移 個長度單位
C.向左平移 個長度單位
D.向右平移 個長度單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班級進(jìn)行教學(xué)實驗.為了比較教學(xué)效果,期中考試后,分別從兩個班級中各隨機抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,結(jié)果如下表:記成績不低于70分者為“成績優(yōu)良”.
分?jǐn)?shù) | |||||
甲班頻數(shù) | 5 | 6 | 4 | 4 | 1 |
一般頻數(shù) | 1 | 3 | 6 | 5 | 5 |
(1)由以下統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的額概率不超過0.025的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計 | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計 |
附:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(2)現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=9x﹣3x+1+c(其中c是常數(shù)).
(1)若當(dāng)x∈[0,1]時,恒有f(x)<0成立,求實數(shù)c的取值范圍;
(2)若存在x0∈[0,1],使f(x0)<0成立,求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|2≤x≤6},B={x|2a≤x≤a+3}
(1)當(dāng)a=2時,求A∪B
(2)當(dāng)BA時,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1中,E,F(xiàn),P,Q分別是BC,C1D1 , AD1 , BD的中點.
(1)求證:PQ∥平面DCC1D1;
(2)求PQ的長;
(3)求證:EF∥平面BB1D1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x|x+bx+c,給出下列4個命題:
①b=0,c>0時,方程f(x)=0只有一個實數(shù)根;
②c=0時,y=f(x)是奇函數(shù);
③y=f(x)的圖象關(guān)于點(0,c)對稱;
④方程f(x)=0至多有2個不相等的實數(shù)根.
上述命題中的所有正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U為R,集合A={x|0<x≤2},B={x|x<﹣3,或x>1}
求:(I)A∩B;
(II)(CUA)∩(CUB);
(III)CU(A∪B).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com