圓C的半徑為5,其圓心在直線x-2y=0上且在一象限,圓C與x軸的相交弦長(zhǎng)為8,則該圓的標(biāo)準(zhǔn)方程為
 
考點(diǎn):圓的標(biāo)準(zhǔn)方程
專題:直線與圓
分析:由已知條件得圓心C到x軸的距離為d=
25-16
=3,所以圓心的縱坐標(biāo)y=3,圓心的橫坐標(biāo)x=6,由此能示出圓的方程.
解答: 解:∵圓C的半徑為5,其圓心在直線x-2y=0上且在一象限,圓C與x軸的相交弦長(zhǎng)為8,
∴圓心C到x軸的距離為d=
25-16
=3,
∴圓心的縱坐標(biāo)y=3,∴圓心的橫坐標(biāo)x=6,
∴圓的方程為:(x-6)2+(y-3)2=25.
故答案為:(x-6)2+(y-3)2=25.
點(diǎn)評(píng):本題考查圓的方程的求法,解題時(shí)要認(rèn)真審題,注意點(diǎn)到直線的距離公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)一動(dòng)直線l與曲線C:(x-1)2+(y-1)2=1相切,此直線和x、y軸的交點(diǎn)分別為A、B,且OA=a,OB=b(a>2,b>2)
(1)a、b之間滿足什么關(guān)系?
(2)求△OAB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知球O是正方體ABCD-A1B1C1D1的內(nèi)切球,且平面ACD1截球O的截面面積為
π
6
,則正方形外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C:
x2
16
+
y2
9
=1及直線l:(2m+1)x+(m+1)y=7m+4(m∈R)的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,DA=AB=BC=2,CD=4,點(diǎn)P在△BCD的內(nèi)部(含邊界)運(yùn)動(dòng),則
AP
BD
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直且長(zhǎng)度分別為2cm,3cm,1cm,則該三棱錐的體積是
 
cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中直線C1
x=2+
2
2
t
y=1+
2
2
t
(t是參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中曲線C2的極坐標(biāo)方程為ρ2+2ρcosθ=1(ρ>0),則直線C1和曲線C2的公共點(diǎn)的直角坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-ax+3,f(2016)=20,則f(-2016)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在實(shí)數(shù)集R上的偶函數(shù)f(x)滿足f(x+1)=f(x-1),且當(dāng)x∈[0,1]時(shí),f(x)=x2,則關(guān)于x的方程f(x)=
1
2
|x|在[-1,2]上根的個(gè)數(shù)是( 。
A、2B、4C、6D、8

查看答案和解析>>

同步練習(xí)冊(cè)答案