橢圓C:
x2
16
+
y2
9
=1及直線l:(2m+1)x+(m+1)y=7m+4(m∈R)的位置關(guān)系是
 
考點(diǎn):橢圓的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:直線l必過定點(diǎn)A(3,1),且在橢圓的內(nèi)部,由此可得直線l與橢圓C的位置關(guān)系.
解答: 解:由直線l:(2m+1)x+(m+1)y=7m+4可得m(2x+y-7)+(x+y-7)=0,
由方程組
2x+y-7=0
x+y-4=0
,解得
x=3
y=1
,
∴直線l必過定點(diǎn)A(3,1),
∴將點(diǎn)A(3,1)代入,可得
x2
16
+
y2
9
<1,
∴直線l與橢圓C恒相交.
點(diǎn)評(píng):本題考查直線與橢圓的位置關(guān)系,確定直線恒過定點(diǎn),且在橢圓的內(nèi)部是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直角梯形ABCD與等腰直角△ABE所在平面垂直,AB∥CD,AB⊥BC,AB=2CD=2BC=2,EA⊥EB.
(1)求證:AB⊥DE;
(2)求二面角B-AE-D的正弦值;
(3)若在線段EA上存在一點(diǎn)F,使EC∥平面FBD,求線段EF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇2,5]且為減函數(shù),有f(2a-3)>f(a),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)M的極坐標(biāo)為(4
2
,
1
4
π),曲線C的參數(shù)方程為
x=1+3cosα
y=3sinα
(α為參數(shù)),則過點(diǎn)M與曲線C相切的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,圓O上一點(diǎn)C在直徑AB上的射影為D,CD=4,BD=8,則AC長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列兩個(gè)變量之間的關(guān)系:
①角度和它的余弦值;
②正n邊形的邊數(shù)與內(nèi)角和;
③家庭的支出與收入;
④某戶家庭用電量與電價(jià)間的關(guān)系.
其中是相關(guān)關(guān)系的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓C的半徑為5,其圓心在直線x-2y=0上且在一象限,圓C與x軸的相交弦長為8,則該圓的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若|
a
+
b
|=|
a
-
b
|,則
a
、
b
的關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

半徑為R的球內(nèi)接一個(gè)正方體,則該正方體的體積是( 。
A、
8
9
3
R3
B、
4
3
πR3
C、2
2
R3
D、
3
9
R3

查看答案和解析>>

同步練習(xí)冊(cè)答案