分析 (1)f(x)=$\sqrt{3}$sinx-cosx-1=2sin(x-$\frac{π}{6}$)-1,然后將x=$\frac{π}{3}$代入求值;
(2)令$\frac{π}{2}$+2kπ≤x-$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ解出單調(diào)遞減區(qū)間,令x-$\frac{π}{6}$=$\frac{π}{2}+kπ$解得對(duì)稱軸方程.
解答 解:(1)f(x)=2$\sqrt{3}sin\frac{x}{2}cos\frac{x}{2}-2{cos^2}\frac{x}{2}$=$\sqrt{3}$sinx-cosx-1=2sin(x-$\frac{π}{6}$)-1.
∴f($\frac{π}{3}$)=2sin$\frac{π}{6}$-1=0.
(2)令$\frac{π}{2}$+2kπ≤x-$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,
解得$\frac{2π}{3}$+2kπ≤x≤$\frac{5π}{3}$+2kπ,
∴f(x)的單調(diào)遞減區(qū)間是[$\frac{2π}{3}$+2kπ,$\frac{5π}{3}$+2kπ],k∈Z.
令x-$\frac{π}{6}$=$\frac{π}{2}+kπ$,
解得x=$\frac{2π}{3}$+kπ,
∴f(x)的對(duì)稱軸方程是x=$\frac{2π}{3}$+kπ,k∈Z.
點(diǎn)評(píng) 本題考查了三角函數(shù)的恒等變換和性質(zhì),化成復(fù)合三角函數(shù)是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{4}{a}^{2}$ | B. | $\frac{\sqrt{4}}{8}{a}^{2}$ | C. | $\frac{\sqrt{3}}{16}{a}^{2}$ | D. | $\frac{\sqrt{13}}{32}{a}^{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1:2 | B. | 2:3 | C. | 4:5 | D. | 5:7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com