分析 2an+(-1)n•an=2n+(-1)n•2n,∴當(dāng)n=2k-1(k∈N*)時(shí),可得a2k-1=0.當(dāng)n=2k時(shí),$3{a}_{2k}={2}^{n+1}$,即a2k=$\frac{{2}^{n+1}}{3}$.再利用等比數(shù)列的前n項(xiàng)公式即可得出.
解答 解:∵2an+(-1)n•an=2n+(-1)n•2n,
∴當(dāng)n=2k-1(k∈N*)時(shí),2a2k-1-a2k-1=0,即a2k-1=0.
當(dāng)n=2k時(shí),$3{a}_{2k}={2}^{n+1}$,即a2k=$\frac{{2}^{n+1}}{3}$.
∴S10=a2+a4+…+a10
=$\frac{{2}^{3}+{2}^{5}+…+{2}^{11}}{3}$=$\frac{\frac{8×({4}^{5}-1)}{4-1}}{3}$=$\frac{2728}{3}$.
故答案為:$\frac{2728}{3}$.
點(diǎn)評(píng) 本題考查了等比數(shù)列的前n項(xiàng)公式、分類討論方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2010 | C. | 2011 | D. | 2012 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4x-y-2=0 | B. | 7x-2y-3=0 | C. | 3x-y-1=0 | D. | 5x-y-3=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{4}$倍 | B. | $\frac{1}{2}$倍 | C. | $\frac{\sqrt{2}}{2}$倍 | D. | $\sqrt{2}$倍 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1)(2) | B. | (1)(3) | C. | (2)(4) | D. | (3)(4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $a+\frac{1}{a}≥2$ | B. | $\frac{a}+\frac{a}≥2$ | C. | a2+b2>2ab | D. | $\frac{{{a^2}+3}}{{\sqrt{{a^2}+2}}}>2$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com