設正項數(shù)列{an}的前n項和為Sn,對任意n∈N*,都有4Sn-an2-4n+1=0且a2>2>a1
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=
an+1
2
,求證:
b1
b2
+
b1b3
b2b4
+…+
b1b3b2n-1
b2b4b2n
2n+1
-1.
考點:數(shù)列與不等式的綜合,等差數(shù)列的通項公式,等比數(shù)列的通項公式,數(shù)列的求和
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:(Ⅰ)根據(jù)數(shù)列的遞推關系,即可求數(shù)列{an}的通項公式;
(Ⅱ)利用放縮法,結合數(shù)列求和,即可證明不等式.
解答: 解:(Ⅰ)∵4Sn-an2-4n+1=0,
∴4Sn-1-an-12-4(n-1)+1=0,
兩式相減得,4an-an2+an-12=4,
即an-12=an2-4an+4=(an-2)2
則an-1=|an-2|,
∵a2>2>a1
∴an-1=an-2,即an-an-1=2,即數(shù)列{an}是等差數(shù)列,公差d=2,
當n=1時,a1=1,
則數(shù)列{an}的通項公式an=2n-1;
(Ⅱ)bn=
an+1
2
=
2n-1+1
2
=n
,
(2m-1)(2m+1)
(2m)2
(
2m-1+2m+1
2
)2
(2m)2
=1
,m=1,2,3…,
b1b3b2n-1
b2b4b2n
 2=(
1×3×5×…(2n-1)
2×4×6×…×2n
)2

=
1×3
22
3×5
42
(2n-3)(2n-1)
(2n-2)2
(2n-1)(2n+1)
(2n)2
1
2n+1
1
2n+1

b1b3b2n-1
b2b4b2n
1
2n+1
=
2
2
2n+1
2
2n-1
+
2n+1
=
2n+1
-
2n-1

因此
b1
b2
+
b1b3
b2b4
+…+
b1b3b2n-1
b2b4b2n
3
-1
+
5
-
3
+…+
2n+1
-
2n-1
=
2n+1
-1.
點評:本題主要考查數(shù)列的通項公式的求解以及數(shù)列和不等式的綜合應用,運算量較大,綜合性較強.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

方程lgx+x=0根的個數(shù)為( 。
A、無窮多B、3C、1D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某人從甲地到乙地有A,B,C三條路可走,走A路的概率為0.2,不走C路的概率為0.8,則該人走B路的概率是( 。
A、0.6B、0.3
C、0.1D、0.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關于x的不等式
x-a-1
x-2a
>-1(a∈R).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是求1×2+2×3+3×4+…+100×101的值的程序框圖,則判斷框內填寫
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為[0,1].若函數(shù)f(x)滿足:對于給定的T(0<T<1),存在t∈[0,1-T].使得f(t+T)=f(t)成立,那么稱f(x)具有性質P(T).
(1)函數(shù)f(x)=sin(x∈[0,1])是否具有性質P(
1
4
)?說明理由;
(2)已知函數(shù)f(x)=
-3x+1   (0≤x≤
1
3
)
6x-2       (
1
3
<x<
2
3
)
-3x+4    (
2
3
≤x≤1)
具有性質P(T),求T的最大值;
(3)已知函數(shù)f(x)的定義域為[0,1],滿足f(0)=f(1),且f(x)的圖象是一條連續(xù)不斷的曲線,問:是否存在正整數(shù)n,使得函數(shù)f(x)具有性質P(
1
n
),若存在,求出這樣的n的取值集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-ax2+(a2-1)x+b(a,b∈R),其圖象在點(1,f(1))處的切線方程為x+y-3=0.
(1)求a,b的值;
(2)求函數(shù)f(x)的極值;
(3)設g(x)=
1+k•f′(x)
x
,(x≠0),求函數(shù)g(x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)對某高校160名籃球運動員在多次訓練比賽中的得分進行統(tǒng)計,將每位運動員的平均成績所得數(shù)據(jù)用頻率分布直方圖表示如下.(如:落在區(qū)間[10,15)內的頻率/組距為0.0125)規(guī)定分數(shù)在[10,20)、[20,30)、[30,40)上的運動員分別為三級籃球運動員、二級籃球運動員、一級籃球運動員,現(xiàn)從這批籃球運動員中利用分層抽樣的方法選出16名運動員作為該高校的籃球運動員代表.
(1)求a的值和選出籃球運動員代表中一級運動員的人數(shù);
(2)若從籃球運動員代表中依次選三人,求其中含有一級運動員人數(shù)X的分布列;
(3)若從該;@球運動員中有放回地選三人,求其中含有一級運動員人數(shù)Y的期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和Sn滿足Sn=2n-an(n∈N*),
(1)計算a1,a2,a3,a4;   
(2)猜想數(shù)列{an}的通項公式,并用數(shù)學歸納法加以證明.

查看答案和解析>>

同步練習冊答案