利用秦九韶算法計(jì)算多項(xiàng)式f(x)=3x6+4x5+5x4+6x3+7x2+8x+1當(dāng)x=4的值的時(shí)候需要做乘法和加法的次數(shù)分別為(  )??
A、6?6B、5?6
C、5?5D、6?5
考點(diǎn):秦九韶算法,中國(guó)古代數(shù)學(xué)瑰寶
專(zhuān)題:算法和程序框圖
分析:利用“秦九韶算法”即可得出.
解答: 解:f(x)=3x6+4x5+5x4+6x3+7x2+8x+1
=(((((3x+4)x+5)x+6)x+7)x+8)x+1,
因此利用“秦九韶算法”計(jì)算多項(xiàng)式f(x)當(dāng)x=4的值的時(shí)候需要做乘法和加法的次數(shù)分別是:6,6.
故選:A.
點(diǎn)評(píng):本題考查了“秦九韶算法”的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x2-2x-4lnx,則f′(x)<0的解集為( 。
A、(2,+∞)
B、(-1,0)U(2,+∞)
C、(-1,2)
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知面α⊥β,α∩β=l,直線a?α,直線b?β,a,b與l斜交,則(  )
A、a和b不垂直但可能平行
B、a和b可能垂直也可能平行
C、a和b不平行但可能垂直
D、a和b既不垂直也不平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的不等式x2-4ax+3a2<0(a>0)的解集為(x1,x2),則x1+x2+
a
x1x2
的最小值是( 。
A、
6
3
B、
2
3
3
C、
4
3
3
D、
2
3
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
左頂點(diǎn)C,A為橢圓在第一象限的點(diǎn),直線OA交橢圓于另一點(diǎn)B,橢圓的左焦點(diǎn)為F1,若直線AF1交BC于M,且
BM
=2
MC
,則橢圓的離心率為( 。
A、
1
3
B、
1
2
C、
3
3
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC內(nèi)接于圓O(圓心是三邊垂直平分線的交點(diǎn)),若
CO
AB
=2
BO
CA
,且|AB|=3,|CA|=6,則cosA的值是( 。
A、
3
4
B、
4
3
C、-
2
4
D、
5
2
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|<π)的圖象的一個(gè)最高點(diǎn)為(-
π
12
,2)與之相鄰的與x軸的一個(gè)交點(diǎn)為(
π
6
,0).
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)減區(qū)間和函數(shù)圖象的對(duì)稱(chēng)軸方程;
(3)用“五點(diǎn)法”作出函數(shù)y=f(x)在長(zhǎng)度為一個(gè)周期區(qū)間上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐A-BCD,AB⊥BD,AD⊥CD,E,F(xiàn)分別為AC,BC的中點(diǎn),且△BEC為正三角形.
(1)求證:CD⊥平面ABD;
(2)若CD=3,AC=10,求點(diǎn)C到平面DEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四邊形ABCD是菱形,其對(duì)角線AC=4,BD=2,直線AE,CF都與平面ABCD垂直,AE=1,CF=4.
(1)求證:平面EBD⊥平面FBD;
(2)求直線AB與平面EAD所成角的正弦值;
(3)求四棱錐E-ABCD與四棱錐F-ABCD公共部分的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案