11.不等式$|\begin{array}{l}{a}&{1}\\{1}&{\frac{x}{x-1}}\end{array}|$<0的解集為{x|x<1或x>2},那么a的值等于$\frac{1}{2}$.

分析 要求的不等式即 a•$\frac{x}{x-1}$-1<0,即(x-1)•(a-1)(x-$\frac{1}{1-a}$)<0.再根據(jù)的解集為{x|x<1或x>2},可得$\left\{\begin{array}{l}{a-1<0}\\{\frac{1}{1-a}=2}\end{array}\right.$,由此求得a的值.

解答 解:不等式$|\begin{array}{l}{a}&{1}\\{1}&{\frac{x}{x-1}}\end{array}|$<0,即 a•$\frac{x}{x-1}$-1<0,即$\frac{(a-1)x+1}{x-1}$<0,即(x-1)•(a-1)(x-$\frac{1}{1-a}$)<0.
再根據(jù)的解集為{x|x<1或x>2},可得$\left\{\begin{array}{l}{a-1<0}\\{\frac{1}{1-a}=2}\end{array}\right.$,求得a=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題主要考查分式不等式的解法,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)y=4x+$\frac{1}{x}$(x>0),那么當(dāng)y取得最小值時(shí),x的值是( 。
A.4B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)α∈R,函數(shù)f(x)=$\sqrt{2}$sin2xcosα+$\sqrt{2}$cos2xsinα-$\sqrt{2}$cos(2x+α)+cosα,x∈R.
(1)若α∈[$\frac{π}{4}$,$\frac{π}{2}$],求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值;
(2)若f(x)=3,求a與x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{{x}^{2}-1}{{x}^{2}+1}$,x為一切實(shí)數(shù),求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)集合A={x|x2-2x≤0,x∈R},B={x|x≥a},若A∪B=B,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,0)B.(-∞,0]C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)的定義域?yàn)锳,若x1,x2∈A且f(x1)=f(x2)時(shí)總有x1=x2,則稱f(x)為單函數(shù).則
①函數(shù)f(x)=(x-1)3是單函數(shù):
②函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,}&{x≥2}\\{2-x,}&{x<2}\end{array}\right.$是單函數(shù)
③若f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2
④若函數(shù)f(x)在定義域內(nèi)某個(gè)區(qū)間D上具有單調(diào)性,則f(x)一定是單函數(shù)
以上命題正確的是( 。
A.①④B.②③C.①③D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知$\overrightarrow{OA}=(1,0),\overrightarrow{OC}=(-1,\sqrt{3})$,$\overrightarrow{CB}$=(cosα,sinα),則$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角的取值范圍為( 。
A.$[\frac{π}{2},\frac{5π}{6}]$B.$[\frac{π}{2},\frac{2π}{3}]$C.$[\frac{2π}{3},\frac{5π}{6}]$D.$[\frac{π}{6},\frac{2π}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)是偶函數(shù),且當(dāng)x≥0時(shí)有f(x)=x(1+x),試求當(dāng)x<0時(shí),f(x)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)f(x)=x2+px+q滿足f(1)=5,f(0)=1,則f(-1)=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案