【題目】已知四棱柱中,底面為菱形,,為中點,在平面上的投影為直線與的交點.
(1)求證:;
(2)求二面角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓()的左、右焦點為,右頂點為,上頂點為.已知.
(1)求橢圓的離心率;
(2)設(shè)為橢圓上異于其頂點的一點,以線段為直徑的圓經(jīng)過點,經(jīng)過原點的直線與該圓相切,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四面體ABCD中,平面DAC⊥底面ABC,,AD=CD=,O是AC的中點,E是BD的中點.
(1)證明:DO⊥底面ABC;
(2)求二面角D-AE-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,直線與軸的交點為,與的交點為,且.
(Ⅰ)求的方程;
(Ⅱ)設(shè)過定點的直線與拋物線交于,兩點,連接并延長交拋物線的準線于點,當直線恰與拋物線相切時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,且與拋物線交于,兩點, (為坐標原點)的面積為.
(1)求橢圓的方程;
(2)如圖,點為橢圓上一動點(非長軸端點),為左、右焦點,的延長線與橢圓交于點,的延長線與橢圓交于點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,設(shè),且,記;
(1)設(shè),其中,試求的單調(diào)區(qū)間;
(2)試判斷弦的斜率與的大小關(guān)系,并證明;
(3)證明:當時,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=4cos ωx·sin+a(ω>0)圖象上最高點的縱坐標為2,且圖象上相鄰兩個最高點的距離為π.
(1)求a和ω的值;
(2)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市統(tǒng)計局就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在).
(1)求居民收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000人中按分層抽樣方法抽出100人作進一步分析,則月收入在的這段應(yīng)抽取多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com