1.若|sin(4π-α)|=sin(π+α),則角α的取值范圍是[2kπ+π,2kπ+2π],k∈Z.

分析 利用誘導(dǎo)公式化簡(jiǎn)可得|sinα|=-sinα,從而解得sinα≤0,由正弦函數(shù)的圖象和性質(zhì)即可得解.

解答 解:∵|sin(4π-α)|=sin(π+α),
∴|sinα|=-sinα,
∴sinα≤0,
∴α∈[2kπ+π,2kπ+2π],k∈Z.
故答案為:[2kπ+π,2kπ+2π],k∈Z.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,正弦函數(shù)的圖象和性質(zhì),屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.命題“若α=$\frac{π}{6}$,則tanα=$\frac{\sqrt{3}}{3}$”的逆否命題是( 。
A.若α≠$\frac{π}{6}$,則tanα≠$\frac{\sqrt{3}}{3}$B.若α=$\frac{π}{6}$,則tanα≠$\frac{\sqrt{3}}{3}$
C.若tanα≠$\frac{\sqrt{3}}{3}$,則α≠$\frac{π}{6}$D.若tanα≠$\frac{\sqrt{3}}{3}$,則α=$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.過(guò)已知直線a外一點(diǎn)P,與直線a上的四個(gè)點(diǎn)A,B,C,D分別畫(huà)四條直線,求證:這四條直線在同一平面內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.cos(-225°)+sin(-225°)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.實(shí)數(shù)a為何值時(shí),直線ax-3y=$\sqrt{2}$與2x-3ay=2平行( 。
A.$\sqrt{2}$B.-$\sqrt{2}$C.$±\sqrt{2}$D.0或$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)滿(mǎn)足f(cosx)=$\frac{1}{2}$x(0≤x≤π),求f(cos$\frac{4π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.sin$\frac{15π}{4}$+cos(-$\frac{11π}{4}$)-cos2$\frac{17π}{3}$=-$\sqrt{2}-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.求證:π是函數(shù)f(x)=sinxcosx(x∈R)的一個(gè)周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.不過(guò)原點(diǎn)的直線l是曲線y=1nx的切線,且直線l與x軸、y軸的截距之和為0,則直線l的方程為x-y-1=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案