已知兩個數(shù)的等差中項是6,等比中項是10,則以這兩個數(shù)為根的一元二次方程是( 。
A、x2+6x+10=0
B、x2-12x+10=0
C、x2-12x+100=0
D、x2+12x+100=0
考點:等比數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:設(shè)出兩數(shù)分別為a與b,根據(jù)兩數(shù)的等差中項是6,等比中項是10,分別利用等差數(shù)列的性質(zhì)以及等比數(shù)列的性質(zhì)求出a+b及ab的值,然后根據(jù)一元二次方程的根的分布與系數(shù)的關(guān)系寫出以a與b為解的方程即可.
解答: 解:設(shè)兩數(shù)為a,b,
根據(jù)題意得:a+b=12,ab=100,
則以這兩個數(shù)為根的一元二次方程是x2-12x+100=0.
故選:C
點評:此題考查了等差、等比數(shù)列的性質(zhì),以及一元二次方程根的分布與系數(shù)的關(guān)系,熟練掌握性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
b
是單位向量,
a
b
=0.若向量
c
滿足|
c
-
a
-
b
|=1,則|
c
|的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在243和3中間插入3個數(shù),使這5個數(shù)成等比數(shù)列,則這三個數(shù)中最中間的那個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
b
滿足|
a
+
b
|=4,則
a
b
的最大值為( 。
A、1B、2C、4D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)的定義域為[0,2],則函數(shù)g(x)=f(x2-1)[-log2(x-1)] -
1
2
的定義域為( 。
A、(1,
3
]
B、[0,2]
C、[1,
2
]
D、(1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)x,y滿足x+y=2,則3x+3y的最小值為(  )
A、2
3
B、6
C、2
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-1
2x+1
,則下列判斷中正確的是( 。
A、奇函數(shù),在R上為增函數(shù)
B、偶函數(shù),在R上為增函數(shù)
C、奇函數(shù),在R上為減函數(shù)
D、偶函數(shù),在R上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各式化簡后的結(jié)果為cosx的是( 。
A、sin(x-
π
2
B、sin(π+x)
C、sin(x+
π
2
D、sin(π-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z=x+y,其中x,y滿足
x+2y≥0
x-y≤0
0≤y≤k
當z的最大值為6時,k的值為(  )
A、3B、4C、5D、6

查看答案和解析>>

同步練習(xí)冊答案