已知函數(shù)f(x)的導函數(shù)為f′(x),且滿足f(x)=3f′(1)•x-x4,則f′(1)=( 。
A、-1B、-2C、1D、2
考點:導數(shù)的運算
專題:導數(shù)的概念及應(yīng)用
分析:求函數(shù)的導數(shù),利用導數(shù)公式即可得到結(jié)論.
解答: 解:∵f(x)=3f′(1)•x-x4,
∴f′(x)=3f′(1)-4x3
令x=1,則f′(1)=3f′(1)-4,
即f′(1)=2,
故選:D
點評:本題主要考查導數(shù)的計算,要求熟練掌握常見函數(shù)的導數(shù)公式.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在由l,2,3,4四個數(shù)字組成(允許重復(fù))的四位數(shù)中,千位上的數(shù)字比個位上的數(shù)字小的概率為( 。
A、
1
2
B、
1
4
C、
3
4
D、
3
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的是由6個大小相同的正方體組成的幾何體,它的俯視圖是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1,M為棱A1B1的中點,N為棱A1D1的中點.如圖是該正方體被M,N,A所確定的平面和N,D,C1所確定的平面截去兩個角后所得的幾何體,則這個幾何體的正視圖為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a<b<0,則下列不等式關(guān)系中不能成立的是( 。
A、
1
a
1
b
B、
1
a-b
1
a
C、|a|>|b|
D、a4>b4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某咖啡廳為了了解熱飲的銷售量y(個)與氣溫x(℃)之間的關(guān)系,隨機統(tǒng)計了某4天的銷售量與氣溫,并制作了對照表:
氣溫(℃) 18 13 10 -1
銷售量(個) 24 34 38 64
由表中數(shù)據(jù),得線性回歸方程y=-2x+a.當氣溫為-4℃時,預(yù)測銷售量約為( 。
A、68B、66C、72D、70

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}中a1+a2+…+a5=15,a12+a22+…+a52=30,則a1-a2+a3-a4+a5=( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|y=lgx},B={x|y=
x2-2x
},則A∩B=( 。
A、{x|x≥2}
B、{x|x>2}
C、{x|x>0}
D、{x|x≤0,或x≥2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和為Sn,且Sn=2an-n,n∈N*
(Ⅰ)求證:{an+1}為等比數(shù)列;并求出數(shù)列{an}的通項公式;
(Ⅱ)若bn=
n
an+1-an
,設(shè)數(shù)列{bn}的前n項和Tn,要使對于任意的n∈N*都有Tn<M恒成立,求M的最小值.

查看答案和解析>>

同步練習冊答案