分析 已知等式整理表示出b=2c,由余弦定理列出關系式,把a與cosA的值代入整理求出b與c的值,利用三角形面積公式即可求出三角形ABC面積,利用正弦定理求出sinB的值即可.
解答 解:由b2=c(b+2c),整理得:b2-bc-2c2=0,即(b+c)(b-2c)=0,
解得:b+c=0(舍去)或b=2c,
∵a=$\sqrt{6}$,cosA=$\frac{3}{4}$,
∴由余弦定理得:a2=b2+c2-2bccosA,即6=b2+c2-$\frac{3}{2}$bc,
把b=2c代入得:6=5c2-3c2,
解得:b=2$\sqrt{3}$,c=$\sqrt{3}$,
∵cosA=$\frac{3}{4}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{7}}{4}$,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{3\sqrt{7}}{4}$,
∵a=$\sqrt{6}$,sinA=$\frac{\sqrt{7}}{4}$,b=2$\sqrt{3}$,
∴由正弦定理$\frac{a}{sinA}$=$\frac{sinB}$得:sinB=$\frac{bsinA}{a}$=$\frac{2\sqrt{3}×\frac{\sqrt{7}}{4}}{\sqrt{6}}$=$\frac{\sqrt{126}}{12}$=$\frac{\sqrt{14}}{4}$,
故答案為:$\frac{3\sqrt{7}}{4}$;$\frac{\sqrt{14}}{4}$
點評 此題考查了正弦、余弦定理,三角形面積公式,以及同角三角函數(shù)間的基本關系,熟練掌握定理及公式是解本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,$\frac{1}{3}$] | B. | (0,$\frac{1}{3}$) | C. | (0,$\frac{1}{3}$] | D. | [0,$\frac{1}{3}$) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com