【題目】【四川省高2017屆第一次名校聯(lián)考(廣志聯(lián)考)(理)】已知函數(shù)

(Ⅰ)當(dāng)時,存在使不等式成立,求實數(shù)的取值范圍;

(Ⅱ)若在區(qū)間上,函數(shù)的圖象恒在直線的下方,求實數(shù)的取值范圍.

【答案】(I);(II)詳見解析.

【解析】試題分析:

試題解析:(I)借助存在型不等式成立的條件建立不等式;(II)先建立不等式,再運(yùn)用導(dǎo)數(shù)知識求解:

解:(Ⅰ)當(dāng)時,

所以,由,

則函數(shù)在區(qū)間為增函數(shù),

則當(dāng)時,,

故存在使不等式成立,

只需即可.

(Ⅱ)在區(qū)間上,函數(shù)的圖象恒在直線的下方等價于對任意,,

恒成立,

設(shè)

當(dāng)時,

①若,即,有,

則函數(shù)在區(qū)間為減函數(shù),

則對任意,

只需,即當(dāng)時,恒成立.

②若,即時,

,

則函數(shù)在區(qū)間為減函數(shù),在區(qū)間為增函數(shù),

,不合題意.

③若,即當(dāng)時,,函數(shù)在區(qū)間為增函數(shù),

,不合題意.

綜上,當(dāng)時,在區(qū)間恒成立,

即當(dāng)時,在區(qū)間上函數(shù)的圖象恒在直線的下方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)的圖象與x軸無交點(diǎn),求a的取值范圍;

(2) 若函數(shù)[-1,1]上存在零點(diǎn),求a的取值范圍;

(3)設(shè)函數(shù),當(dāng)時,若對任意的,總存在,使得,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 過橢圓 ()的短軸端點(diǎn), 分別是圓與橢圓上任意兩點(diǎn),且線段長度的最大值為3.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(diǎn)作圓的一條切線交橢圓, 兩點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)的最小值為1,f(0)f(2)3.

(1)f(x)的解析式;

(2)f(x)在區(qū)間[2a,a1]上不單調(diào),求實數(shù)a的取值范圍;

(3)在區(qū)間[1,1],yf(x)的圖象恒在y2x2m1的圖象上方,試確定實數(shù)m的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題P:函數(shù)是增函數(shù),命題Q:

(1)寫出命題Q的否命題,并求出實數(shù)的取值范圍,使得命題為真命題;

(2)如果是真命題,是假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面為矩形,D

的中點(diǎn),AC⊥平面BCC1B1

(Ⅰ)證明:AB//平面CDB1;

(Ⅱ)若AC=BC=1,BB1=,

(1)求BD的長;

(2)求三棱錐C-DB1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉辦安全法規(guī)知識競賽,從參賽的高一、高二學(xué)生中各抽出100人的成績作為樣本,對高一年級的100名學(xué)生的成績進(jìn)行統(tǒng)計,并按 , , , , 分組,得到成績分布的頻率分布直方圖(如圖)。

(1)若規(guī)定60分以上(包括60分)為合格,計算高一年級這次競賽的合格率;

(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此,估計高一年級這次知識競賽的學(xué)生的平均成績;

(3)若高二年級這次競賽的合格率為,由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并問是否有的把握認(rèn)為“這次知識競賽的成績與年級有關(guān)”。

高一

高二

合計

合格人數(shù)

不合格人數(shù)

合計

附:參考數(shù)據(jù)與公式

高一

高二

合計

合格人數(shù)

a

b

a+b

不合格人數(shù)

c

d

c+d

合計

a+c

b+d

n

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)3ax22bxc,abc0f(0)>0,f(1)>0,證明a>0,并利用二分法證明方程f(x)0在區(qū)間[0,1]內(nèi)有兩個實根.

查看答案和解析>>

同步練習(xí)冊答案