已知tanα=
1
3
,求
tan3(-α)cot(2π+α)tan(2π-α)
tan(α-
5
2
π)-tan(π-α)tan(
3
2
π-α)
的值.
考點:運用誘導公式化簡求值
專題:三角函數(shù)的求值
分析:直接利用誘導公式化簡所求的表達式,代入已知條件即可求解結果.
解答: 解:∵tanα=
1
3
,∴cotα=3.
tan3(-α)cot(2π+α)tan(2π-α)
tan(α-
5
2
π)-tan(π-α)tan(
3
2
π-α)

=
tan3αcotαtanα
-cotα+tanαcotα

=
tan3α
-cotα+tanαcotα

=
(
1
3
)3
-3+1

=-
1
54
點評:本題考查誘導公式的應用,三角函數(shù)的化簡求值,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有三項體育運動項目,每個項目均設冠軍和亞軍各一名獎項,學生甲參加了這三個運動項目,但只獲得一個獎項,學生甲獲獎的不同情況有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,若a12=2-a2004,則S2015=( 。
A、4032B、2016
C、4030D、2015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
tan(π+β)cot(-β-π)
cos(π-β)tan(3π-β)
|
=-2cos(-β-3π),則β的取值集合是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知tanα=2,計算
4sinα-2cosα
5cosα+3sinα
的值;
(2)化簡:
sin(π-α)cos(π+α)cos(
2
+α)
cos(3π-α)sin(3π+α)sin(
2
-α)

(3)已知一扇形的圓心角是72°,半徑等于20cm,求扇形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以平面直角坐標系的原點為極點,x軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數(shù)方程是
x=t+1
y=t-1
(t為參數(shù)),圓C的極坐標方程是ρ=4cosθ,則直線l被圓C截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的首項a1=
3
,且滿足an+1=
an+
3
1-
3
an
,則a2008=( 。
A、-
3
B、-
3
3
C、0
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的下頂點為B(0,-1),B到焦點的距離為2.
(Ⅰ)設Q是橢圓上的動點,求|BQ|的最大值;
(Ⅱ)直線l過定點P(0,2)與橢圓C交于兩點M,N,若△BMN的面積為
6
5
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,b>0,c>0,d>0,求證(ab+cd)(ac+bd)≥4abcd.

查看答案和解析>>

同步練習冊答案