已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,且橢圓經(jīng)過點A(0,-1)
(Ⅰ)求橢圓E的方程;
(Ⅱ)如果過點H(0,
3
5
)的直線與橢圓E交于M、N兩點(點M、N與點A不重合).
①若△AMN是以MN為底邊的等腰三角形,求直線MN的方程;
②在y軸是否存在一點B,使得
BM
BN
,若存在求出點B的坐標;若不存在,請說明理由.
考點:直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(Ⅰ)由已知條件得
b=1
e=
c
a
=
3
2
a2=b2+c2
,由此能求出曲線E的方程.
(Ⅱ)①設直線MN的方程為y=kx+
3
5
,把y=kx+
3
5
代入橢圓方程,得:(1+4k2)x2+
24
5
kx
-
64
25
=0,若k=0,則P(0,
3
5
),滿足AP⊥MN,直線MN的方程為y=
3
5
;k≠0,則kAP=-
20k2+8
12k
=-
1
k
,直線MN的方程為y=±
5
5
x+
3
5
,由此能求出直線MN的方程.
②假設存在點B(0,t),滿足
BM
BN
,
BM
=(x1,y1-t)
BN
=(x2,y2-t)
,由
BM
BN
=0,解得t=-1.從而推導出存在B(0,-1),使得
BM
BN
解答: 解:(Ⅰ)∵橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,且橢圓經(jīng)過點A(0,-1),
b=1
e=
c
a
=
3
2
a2=b2+c2
,解得a=2,b=1c=
3

∴曲線E的方程為
x2
4
+y2=1

(Ⅱ)①若過點H的直線斜率不存在,此時M,N兩點吸一個點與A點重合,不滿足題意,
∴直線MN的斜率存在,設其斜率為k,則MN的方程為y=kx+
3
5

把y=kx+
3
5
代入橢圓方程,得:
(1+4k2)x2+
24
5
kx
-
64
25
=0,
設M(x1,y1),N(x2,y2),MN的中點P(x0,y0),
x1+x2=-
24k
5(1+4k2)
,x1x2=-
64
25(1+4k2)

x0=
x1+x2
2
=-
12k
5(1+4k2)
,y0=kx0+
3
5
=
3
5(1+4k2)

AP⊥MN,且P(-
12k
5(1+4k2)
,
3
5(1+4k2)
),
若k=0,則P(0,
3
5
),顯然滿足AP⊥MN,此時直線MN的方程為y=
3
5
;
k≠0,則kAP=-
20k2+8
12k
=-
1
k
,解得k=±
5
5
,
∴直線MN的方程為y=±
5
5
x+
3
5

5
x-5y+3=0
5
x+5y-3=0
,
綜上所述:直線MN的方程為y=
3
5
5
x+5y-3=0

②假設存在點B(0,t),滿足
BM
BN
,
BM
=(x1,y1-t)
BN
=(x2,y2-t)
,
BM
BN
=x1x2+y1y2-t(y1+y2)+t2
=-
64
25(1+4k2)
+
-100k2+9
25(1+4k2)
-
6t
5(1+4k2)
+t2

=
(100t2-100)k2+(25t2-30t-55)
25(1+4k2)
=0,
100t2-100=0
25t2-30t-55=0
,解得t=-1.
∴存在B(0,-1),使得
BM
BN
點評:本題考查橢圓方程的求法,考查直線方程的求法,考查使向量垂直的點是否存在的判斷與求法,解題時要認真審題,注意函數(shù)與方程思想的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,已知直線m∥α,m∥β,α∩β=n,求證:m∥n 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p:f(x)=
1-x
3
,且f(a)<1;q:集合A={x|x2+(a+2)x+1=0,x∈R},且A≠∅.若p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓經(jīng)過A(5,2)和B(3,-2)兩點,且圓心在直線2x-y-3=0上,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cosxsin(x+
π
3
)-
3
2

(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若△ABC的三邊a,b,c滿足b2=ac,且邊b所對角為B,試求cosB的取值范圍,并確定此時f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={y|y=-2x,x∈(2,3]},B={x|x2+3x-a(a+3)>0}
(1)當a=4時,求A∩B;
(2)若A⊆B,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(5,-3),
b
=(9,-6-cosα),α是第二象限角,
a
∥(2
a
-
b
),則tanα=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某個幾何體的三視圖如圖所示,根據(jù)圖中標出的尺寸,可得這個幾何體的表面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為120,所有偶數(shù)項的和為110,則該數(shù)列共有
 
項.

查看答案和解析>>

同步練習冊答案