19.已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$($\overrightarrow{a}$,$\overrightarrow$為非零向量),且∠AOB=90°,則|$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow}{|\overrightarrow|}$|=$\sqrt{2}$.

分析 由題意得到$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow}{|\overrightarrow|}$=(1,0)+(0,1)=(1,1),再求出模即可.

解答 解:$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$($\overrightarrow{a}$,$\overrightarrow$為非零向量),且∠AOB=90°,
|$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow}{|\overrightarrow|}$|=|(1,0)+(0,1)|=|(1,1)|=$\sqrt{2}$,
故答案為:$\sqrt{2}$.

點評 本題考查了單位向量和向量的模的運算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求過M(4,2)且與圓x2+y2-8x+6y=0相切的直線方程?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若直線3x+2y-2m-1=0與直線2x+4y-m=0的交點在第四象限,則實數(shù)m的取值范圍是.
A.(-∞,-2)B.(-2,+∞)C.(-∞,-$\frac{2}{3}$)D.(-$\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求函數(shù)y=(log${\;}_{\frac{1}{2}}$x)2-4log${\;}_{\frac{1}{2}}$x在區(qū)間[$\frac{1}{8}$,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一個對稱中心是($\frac{π}{8}$,0).
(1)求φ的值;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合${A}=\left\{{x\left|{\frac{x}{x-1}≥0}\right.}\right\}$,集合 B={x|lnx≥0},則“x∈A”是“x∈B”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.△ABC中,D是BC的中點,若AB=4,AC=1,∠BAC=60°,則AD=$\frac{\sqrt{21}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)奇函數(shù)f(x)在(0,+∞)上為單調(diào)遞增函數(shù),且f(2)=0,則不等式$\frac{{f({-x})-f(x)}}{x}≥0$的解集( 。
A.[-2,0]∪[2,+∞)B.(-∞,-2]∪(0,2]C.(-∞,-2]∪[2,+∞)D.[-2,0)∪(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知x=$\frac{π}{6}$是函數(shù)f(x)=(asinx+cosx)cosx-$\frac{1}{2}$圖象的一條對稱軸.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)作出函數(shù)f(x)在x∈[0,π]上的圖象簡圖.

查看答案和解析>>

同步練習(xí)冊答案