【題目】在如圖所示的幾何體中,四邊形是等腰梯形,∥,平面.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值.
【答案】:(Ⅰ)見解析;(Ⅱ)
【解析】
試題分析:(1)要證明直線和平面垂直,只需證明直線和平面內(nèi)的兩條相交直線垂直.由已知得,故只需證明,在中,由余弦定理得的關(guān)系,即的關(guān)系確定,在中,結(jié)合已知條件可判定是直角三角形,且,從而可證明BD⊥平面AED;(2)求二面角,可先找后求,過作,由已知FC⊥平面ABCD,得面,故,,故為二面角F—BD—C的平面角,在中計(jì)算.
(1)在等腰梯形ABCD中,AB∥CD,∠DAB= 60°,,由余弦定理可知,
,即,在中,,,則是直角三角形,且,又,且,故BD⊥平面AED.
(2)過作,交于點(diǎn),因?yàn)?/span>FC⊥平面ABCD,面,所以,所以
面,因此,,故為二面角F—BD—C的平面角.
在中,,可得
因此. 即二面角F—BD—C的正切值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為美化環(huán)境,從紅、黃、白、紫4種顏色的花中任選2種花種在一個(gè)花壇中,余下的2種花種在另一個(gè)花壇中,則紅色和紫色的花不在同一花壇的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+|2x﹣1|(a∈R).
(1)當(dāng)a=﹣1時(shí),求f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含集合 ,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex﹣ax,a是常數(shù).
(Ⅰ)若a=1,且曲線y=f(x)的切線l經(jīng)過坐標(biāo)原點(diǎn)(0,0),求該切線的方程;
(Ⅱ)討論f(x)的零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.
求證:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)設(shè),計(jì)算的導(dǎo)數(shù).
【答案】(1).(2).
【解析】試題分析:(1)由導(dǎo)數(shù)的基本定義就出斜率,根據(jù)點(diǎn)斜式寫出切線方程;(2), .
試題解析:
(1),則,
又,∴所求切線方程為,即.
(2), .
【題型】解答題
【結(jié)束】
18
【題目】對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:
(1)求出表中及圖中的值;
(2)若該校高一學(xué)生有800人,試估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間內(nèi)的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和Sn滿足 ,且a1 , a2+6,a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知半徑為1的動(dòng)圓與定圓(x-5)2+(y+7)2=16相切,則動(dòng)圓圓心的軌跡方程是( )
A. (x-5)2+(y+7)2=25
B. (x-5)2+(y+7)2=3或(x-5)2+(y+7)2=15
C. (x-5)2+(y+7)2=9
D. (x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面上動(dòng)點(diǎn)M到直線x=﹣1的距離比它到點(diǎn)F(2,0)的距離少1.
(1)求動(dòng)點(diǎn)M的軌跡E的方程;
(2)已知點(diǎn)B(﹣1,0),設(shè)過點(diǎn)(1,0)的直線l與軌跡E交于不同的兩點(diǎn)P、Q,證明:x軸是∠PBQ的角平分線所在的直線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com