14.關(guān)于x的不等式${log_2}({x^2}-1)>{log_2}(-2x)$的解集為(-∞,-1$-\sqrt{2}$).

分析 由對數(shù)函數(shù)的性質(zhì)化對數(shù)不等式為一元二次不等式組求解.

解答 解:由${log_2}({x^2}-1)>{log_2}(-2x)$,得
$\left\{\begin{array}{l}{{x}^{2}-1>-2x}\\{-2x>0}\end{array}\right.$,解得x$<-1-\sqrt{2}$.
∴不等式${log_2}({x^2}-1)>{log_2}(-2x)$的解集為(-∞,-1$-\sqrt{2}$).
故答案為:(-∞,-1$-\sqrt{2}$).

點(diǎn)評 本題考查對數(shù)不等式的解法,考查了對數(shù)函數(shù)的性質(zhì),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某市場經(jīng)營一批進(jìn)價(jià)為300元/件的商品,在市場試銷中發(fā)現(xiàn),此商品的日銷售量y(件)與銷售單價(jià)x(元)之間存在一次函數(shù)的關(guān)系,且銷售單價(jià)為300元時(shí),銷售量是60件;銷售單價(jià)為400元時(shí),銷售量是50件.
(1)求出y與x的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)設(shè)經(jīng)營此商品的日銷售利潤為w元,根據(jù)上述關(guān)系,寫出w關(guān)于x的函數(shù)關(guān)系式,并指出銷售單價(jià)x為多少元時(shí),才能獲得最大日銷售利潤?最大日銷售利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.有1999個(gè)集合,每個(gè)集合有45個(gè)元素,任意兩個(gè)集合的并集有89個(gè)元素,問此1999個(gè)集合的并集有多少個(gè)元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.向量$\overrightarrow{a}$=(sinθ,$\sqrt{3}$),$\overrightarrow$=(1,cosθ),其中θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),則|$\overrightarrow{a}$+$\overrightarrow$|的范圍是($\sqrt{3}$,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題中真命題是( 。
A.若$\overrightarrow{a}$與$\overrightarrow$互為負(fù)向量,則$\overrightarrow{a}$+$\overrightarrow$=0B.若 $\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow$•$\overrightarrow{c}$,則$\overrightarrow{a}$=$\overrightarrow$
C.若k為實(shí)數(shù)且k$\overrightarrow{a}$=$\overrightarrow{0}$,則k=0或$\overrightarrow{a}$=$\overrightarrow{0}$D.若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$在$\overrightarrow$上的投影為|$\overrightarrow{a}$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.命題“若am2<bm2,則a<b”的逆命題為假命題.(填“真”、“假”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在平面直角坐標(biāo)系xOy中,將函數(shù)y=ex+1的圖象沿著x軸的正方向平移1個(gè)單位長度,再作關(guān)于y軸的對稱變換,得到函數(shù)f(x)的圖象,則函數(shù)f(x)的解析式為f(x)=e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左頂點(diǎn)為A(-2,0),過右焦點(diǎn)F且垂直于長軸的弦長為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線y=kx+m(k<0,m>0)與y軸交于點(diǎn)P,與x軸交于點(diǎn)Q,與橢圓C交于M,N兩點(diǎn),若$\frac{1}{|PM|}$+$\frac{1}{|PN|}$=$\frac{3}{|PQ|}$,求直線y=kx+m過定點(diǎn),并求出這個(gè)定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.指出下列函數(shù)的最大值和最小值以及取得最值時(shí)x的值.
(1)y=2sin($\frac{1}{3}x+\frac{π}{3}$);
(2)y=$\frac{1}{2}$sin(2x-$\frac{π}{4}$)

查看答案和解析>>

同步練習(xí)冊答案