9.設(shè)地球的半徑為R,在北緯45°緯線圈上有兩點(diǎn)A、B,A在西經(jīng)40°經(jīng)線上,B在東經(jīng)50°經(jīng)線上,求A,B兩點(diǎn)間緯線圈的劣弧長及A,B兩點(diǎn)間球面距離.

分析 A、B兩地在同一緯度圈上,計(jì)算經(jīng)度差,求出AB弦長,以及球心角,然后求出球面距離.

解答 解:地球表面上從A地(北緯45°,西經(jīng)40°)到B地(北緯45°,東經(jīng)50°)
AB的緯圓半徑是$\frac{\sqrt{2}R}{2}$,經(jīng)度差是90°,
所以A,B兩點(diǎn)間緯線圈的劣弧長為$\frac{π}{2}•\frac{\sqrt{2}R}{2}$=$\frac{\sqrt{2}πR}{4}$
又AB=R
所以球心角是θ=$\frac{π}{3}$,
所以A、B兩地的球面距離是$\frac{πR}{3}$.

點(diǎn)評(píng) 本題考查球面距離及其它計(jì)算等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查空間想象能力.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.函數(shù)y=3cos(kx+$\frac{π}{4}$)(k∈N+),若對任意的m∈R,在[m,m+1]之間f(x)至少取得最大值、最小值各一次,求實(shí)數(shù)k的最小值,并就最小的k值求出最小正周期及對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.空間四邊形ABCD中,P、Q、R、H分別是AB、BC、CD、DA的中點(diǎn).
(1)求證:四邊形PQRH是平行四邊形;
(2)若AC=BD,則四邊形PQRH是什么四邊形?
(3)若AC⊥BD,則四邊形PQRH是什么四邊形?
(4)空間四邊形ABCD滿足什么條件時(shí),PQRH是正方形?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.急劇增加的人口已經(jīng)使我們賴以生存的地球不堪重負(fù),控制人口急劇增長的急迫任務(wù)擺在我們面前.
(1)世界人口在過去的40 年內(nèi)翻了一番,問每年人口平均增長率是多少?
(2)我國人口在2003年底達(dá)到13.14億,若將人口平均增長率控制在1%以內(nèi),我國人口在2013年底最多有多少億?
以下對數(shù)值可供計(jì)算使用:
N1.0101.0151.0171.3102.000
lgN0.00430.00650.00750.11730.3010
N12.4813.1113.1414.51
lgN1.09621.11761.11861.1616

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知x與y之間的一組數(shù)據(jù):
x1234
y1357
則y與x的線性回歸方程$\widehat{y}$=bx+a必過( 。
A.(2,3)B.(2.5,3.5)C.(3,5)D.(2.5,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.把一顆骰子連續(xù)投擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為x,第二次出現(xiàn)的點(diǎn)數(shù)為y.
(1)求投擲兩次所得點(diǎn)數(shù)之和能被4整除的概率;
(2)設(shè)向量$\overrightarrow{p}$=(x,y),$\overrightarrow{q}$=(2,-1),求$\overrightarrow{p}$⊥$\overrightarrow{q}$的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某工廠受政府財(cái)政資助生產(chǎn)一種特殊產(chǎn)品,生產(chǎn)這種產(chǎn)品每年需要固定投資80萬元,此外每生產(chǎn)1件該產(chǎn)品還需要增加投資2萬元,若年產(chǎn)量為x(x∈N*)件,當(dāng)x≤18時(shí),政府全年合計(jì)給予財(cái)政撥款為(30x-x2)萬元;當(dāng)x>18時(shí),政府全年合計(jì)給予財(cái)政撥款為(225+0.5x)萬元,記該工廠生產(chǎn)這種產(chǎn)品全年凈收入為y萬元.
(Ⅰ)求y(萬元)與x(件)的函數(shù)關(guān)系式;
(Ⅱ)該工廠的年產(chǎn)量為多少件時(shí),全年凈收入達(dá)到最大,并求最大值.
(注:年凈收入=政府年財(cái)政撥款額-年生產(chǎn)總投資)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知點(diǎn)A(2,0)是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右頂點(diǎn),且橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$.過點(diǎn)M(-3,0)作直線l交橢圓C于P、Q兩點(diǎn).
(1)求橢圓C的方程,并求出直線l的斜率的取值范圍;
(2)橢圓C的長軸上是否存在定點(diǎn)N(n,0),使得∠PNM=∠QNA恒成立?若存在,求出n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線y=x+2與圓x2+y2=2的位置關(guān)系為( 。
A.相切B.相交但直線不過圓心
C.直線過圓心D.相離

查看答案和解析>>

同步練習(xí)冊答案