已知拋物線C:y2=8x與點(diǎn)M(-2,2),過C的焦點(diǎn)的直線l與C交于A,B兩點(diǎn),若
MA
MB
=0
,求|AB|.
考點(diǎn):直線與圓錐曲線的關(guān)系,平面向量數(shù)量積的運(yùn)算
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由拋物線C:y2=8x可得焦點(diǎn)F(2,0),設(shè)A(
y
2
1
8
,y1)
,B(
y
2
2
8
,y2)
.設(shè)直線l的方程為my=x-2,與拋物線的方程聯(lián)立可得一元二次方程的根與系數(shù)的關(guān)系,利用數(shù)量積運(yùn)算可得m,再利用弦長公式即可得出.
解答: 解:由拋物線C:y2=8x可得焦點(diǎn)F(2,0),設(shè)A(
y
2
1
8
,y1)
,B(
y
2
2
8
,y2)

設(shè)直線l的方程為my=x-2,聯(lián)立
my=x-2
y2=8x
,化為y2-8my-16=0,
∴y1+y2=8m,y1y2=-16.(*)
MA
MB
=0
,∴(
y
2
1
8
+2,y1-2)•(
y
2
2
8
+2,y2-2)
=0.
化為(
y
2
1
8
+2)(
y
2
2
8
+2)+(y1-2)(y2-2)=0
,
整理為
y
2
1
y
2
2
64
+
1
4
(y1+y2)2
+
1
2
y1y2
+8-2(y1+y2)=0,
把(*)代入上式可得
162
64
+
1
4
×(8m)2+
1
2
×(-16)
+8-2×8m=0,
化為4m2-4m+1=0,解得m=
1
2

∴y1+y2=4,y1y2=-16.
∴|AB|=
(1+m2)[(y1+y2)2-4y1y2]
=
(1+
1
4
)(42+4×16)
=10.
點(diǎn)評:本題考查了拋物線的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與拋物線相交問題轉(zhuǎn)化為方程聯(lián)立可得一元二次方程的根與系數(shù)的關(guān)系、數(shù)量積運(yùn)算、弦長公式等基礎(chǔ)知識(shí)與基本技能方法,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2(x-
π
6
)-sin2x

(1)求f(
π
12
)
的值;
(2)當(dāng)x∈[0,
π
2
]
,求函數(shù)y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2|x-a|的圖象關(guān)于直線x=1對稱,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知,tan(
π
4
+α)=3,計(jì)算:
(1)tanα
(2)
2sinαcosα+3cos2α
5cos2α-3sin2α

(3)sinα•cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某早餐店的早點(diǎn)銷售價(jià)格如下:
飲料 豆?jié){ 牛奶
單價(jià) 1元 2.5元 1元
面食 油條 面包 包子
單價(jià) 1元 4元 1元
假設(shè)小明的早餐搭配為一杯飲料和一個(gè)面食.
(1)求小明的早餐價(jià)格最多為3元的概率;
(2)求小明不喝牛奶且不吃油條的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F是拋物線y2=4x上的焦點(diǎn),P是拋物線上的一個(gè)動(dòng)點(diǎn),若動(dòng)點(diǎn)M滿足
FP
=2
FM
,則M的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓2x2+y2-10=0在第一象限內(nèi)的點(diǎn)P作圓x2+y2=4的兩條切線,當(dāng)這兩條切線垂直時(shí),點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l與直線l1:x-3y+10=0和直線l2:2x+y-8=0分別交于M,N兩點(diǎn),且MN的中點(diǎn)坐標(biāo)為(0,1),則直線l的方程為( 。
A、x+4y-4=0
B、4x+y-4=0
C、x-4y+4=0
D、x-4y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式2x-y+5>0表示的區(qū)域在直線2x-y+5=0的( 。
A、右上方B、右下方
C、左上方D、左下方

查看答案和解析>>

同步練習(xí)冊答案