sin197°•sin43°-cos(-17°)•sin313°等于(  )
A、
1
2
B、-
1
2
C、-
3
2
D、
3
2
考點:兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:由誘導(dǎo)公式和和差角公式化簡即可.
解答: 解:sin197°•sin43°-cos(-17°)•sin313°
=sin(180°+17°)•sin43°-cos(-17°)•sin(270°+43°)
=-sin17°sin43°-cos17°(-cos43°)
=cos17°cos43°-sin17°sin43°
=cos(17°+43°)=cos60°=
1
2

故選:A.
點評:本題考查兩角和與差的正弦函數(shù),涉及誘導(dǎo)公式的應(yīng)用,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線l經(jīng)過點(1,-2),且與向量
a
=(2,3)垂直,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個非0常數(shù)后,平均數(shù)改變,方差恒不變.
②線性回歸方程,
y
=bx+a必過點(
.
x
.
y

③線性回歸方程
y
=5-2x,變量x增加一個單位時,y平均增加2個單位
④若事件A,B滿足P(A)+P(B)=1,則A、B是互斥事件.
其中錯誤命題的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是正方體的表面展開圖,則在這個正方體中,EF與GH(  )
A、平行
B、是異面直線且成60°角
C、是異面直線且互相垂直
D、相交且互相垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在-9和3之間插入n個數(shù),使這n+2個數(shù)組成和為-21的等差數(shù)列,則n=( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c為△ABC的三邊,且(a+c)(a-c)=b2+bc,則角A等于(  )
A、150°B、120°
C、60°D、30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次抗洪搶險中,用射擊方法引爆從上游漂流而下一巨大汽油罐.已知只有5發(fā)子彈備用,且首次命中只能使汽油流出,再次命中才能引爆成功.每次射擊命中概率都是
2
3
,每次命中與否互相獨立,則油罐被引爆的概率為( 。
A、
232
243
B、
230
243
C、
211
232
D、
211
243

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一輪船行駛時,單位時間的燃料費u與其速度v的立方成正比,若輪船的速度為每小時10km 時,燃料費為每小時35元,其余費用每小時為560元,這部分費用不隨速度而變化.已知該輪船最高速度為25km/h,則輪船速度為(  )km/h時,輪船行每千米的費用最少.
A、10B、15C、20D、25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2sin(ωx+φ)(φ>0)為偶函數(shù)(0<φ<π),其圖象與直線y=2某兩個交點的橫坐標分別為x1,x2,若|x1-x2|的最小值為π,則該函數(shù)的一個遞增區(qū)間可以是( 。
A、(-
π
2
,-
π
4
B、(-
π
4
π
4
C、(0,
π
2
D、( 
π
4
4

查看答案和解析>>

同步練習(xí)冊答案