如圖所示,在平面直角坐標系xOy中,過橢圓E:
x2
4
+
y2
3
=1內(nèi)一點P(1,1)的一條直線與橢圓交于點A,C,且
AP
PC
,其中λ為常數(shù).
(1)求橢圓E的離心率;
(2)當點C恰為橢圓的右頂點時,試確定對應λ的值;
(3)當λ=1時,求直線AC的斜率.
考點:直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(1)因為a2=4,b2=3,由此能求出離心率.
(2)因為C(2,0),所以直線PC的方程為y=-x+2,由
y=-x+2
x2
4
+
y2
3
=1
,能求出λ=
5
7

(3)
AP
=
PC
,設A(x1,y1),C(x2,y2),利用點差法能求出kAC=-
3
4
解答: (本小題滿分16分)
解:(1)因為a2=4,b2=3,
所以c2=1,即a=2,c=1,
所以離心率e=
c
a
=
1
2
.(4分)
(2)因為C(2,0),所以直線PC的方程為y=-x+2,…(6分)
y=-x+2
x2
4
+
y2
3
=1
,解得A(
2
7
12
7
)
,…(8分)
代入
AP
PC
中,得λ=
5
7
.…(10分)
(3)因為λ=1,所以
AP
=
PC
,
設A(x1,y1),C(x2,y2),
則x1+x2=2,y1+y2=2,…(12分)
x12
4
+
y12
3
=1,
x22
4
+
y22
3
=1

兩式相減,得
(x1+x2)(x1-x2)
4
+
(y1+y2)(y1-y2)
3
=0

x1-x2
4
+
y1-y2
3
=0
,
從而
y1-y2
x1-x2
=-
3
4
,即kAC=-
3
4
.…(16分)
點評:本題考查橢圓的離心率的求法,考查實數(shù)的求法,考查直線的斜率的求法,解題時要認真審題,注意點差法的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知|
OA
|=1,|
OB
|=
3
,
OA
OB
=0,點C在∠AOB內(nèi),且∠AOC=60°,設
OC
=m
OA
+n
OB
(m,n∈R),則
m
n
=( 。
A、
1
4
B、
1
3
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,AB=AC,∠CAB=90°,且
AD
AC
(0<λ<
1
2
),過點D作直線DE∥AB交BC于E,將△DEC沿DE折起,使C點在平面ADEB內(nèi)的射影與點A重合(如圖),設M是BC的中點.
(Ⅰ)求證:BC⊥AD;
(Ⅱ)當λ=
1
3
時,求直線BC與平面EAM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
=(
3
sinx,sinx),
b
=(cosx,sinx),x∈[0,
π
2
].
(1)若|
a
|=|
b
|,求x的值;
(2)設函數(shù)f(x)=
a
b
,求f(x)的最大值及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cosx•sin(x+
π
3
)-
3
sin2x+sinx•cosx.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)將函數(shù)f(x)的圖象按向量
a
=(m,0)平移后得到g(x)的圖象,求使函數(shù)g(x)為偶函數(shù)的m的最小正值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3+bx2的圖象經(jīng)過點M(1,4),曲線在點M處的切線恰好與直線x+9y-3=0垂直.
(1)求實數(shù)a、b的值
(2)若函數(shù)f(x)在區(qū)間[m,m+1]上單調(diào)遞增,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖F1、F2為橢圓C:
x2
a2
+
y2
b2
=1的左、右焦點,D、E是橢圓的兩個頂點,橢圓的離心率e=
3
2
,SDEF2=1-
3
2
.若點M(x0,y0)在橢圓C上,則點N(
x0
a
y0
b
)稱為點M的一個“橢點”,直線l與橢圓交于A、B兩點,A、B兩點的“橢點”分別為P、Q.
(1)求橢圓C的標準方程;
(2)問是否存在過左焦點F1,的直線l,使得以PQ為直徑的圓經(jīng)過坐標原點?若存在,求出該直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的內(nèi)角A、B、C 所對的邊分別為a、b、c,且a2+c2+ac=b2
(1)求角B的大;
(2)若△ABC的面積為2
3
且sinA=2sinC,求a和c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a、b邊是方程x2-2
3
x+2=0的兩個根,且2cos(A+B)=1.
(1)求角C的度數(shù);
(2)求c邊的長度.

查看答案和解析>>

同步練習冊答案