若在平面直角坐標(biāo)系內(nèi)過點P(1,
3
)
且與原點的距離為d的直線有兩條,則d的取值范圍是
 
考點:點到直線的距離公式
專題:直線與圓
分析:由兩點間的距離公式求得原點到過點P(1,
3
)
的直線的距離的最大值,又原點到過原點與P點的直線的距離為0,則滿足條件的答案可求.
解答: 解:∵過點P(1,
3
)
的直線與原點的距離最大為
12+(
3
)2
=2

此時直線與PO垂直,有且只有一條.
當(dāng)直線過原點的時候,距離d=0.此時也只有一條.
如圖,

∴當(dāng)0<d<2時,直線有兩條.
∴在平面直角坐標(biāo)系內(nèi)過點P(1,
3
)
且與原點的距離為d的直線有兩條,則d的取值范圍是(0,2).
故答案為:(0,2).
點評:本題考查兩點間的距離公式,訓(xùn)練了數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在一次綜合知識競賽中,有兩道填空題和兩道解答題,填空題每題5分,解答題每題10分,某參賽者答對填空題的概率都是
3
4
,答對解答題的概率都是
2
3
,解答備題的結(jié)果是相互獨立的.
(Ⅰ)求該參賽者恰好答對一道題的概率;
(Ⅱ)求該參賽者的總得分X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx+x2-ax(a∈R).
(Ⅰ)當(dāng)a=3時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1,x2,且x1∈(0,1],求證:f(x1)-f(x2)≥-
3
4
+ln2;
(Ⅲ)設(shè)g(x)=f(x)+2ln
ax+2
6
x
,對于任意a∈(2,4),總存在x∈[
3
2
,2]
,使g(x)>k(4-a2)成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
4
x2+bx-
3
4
.若對任意實數(shù)α,β,不等式f(cosα)≤0,f(2-sinβ)≥0恒成立,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ABCD-A1B1C1D1是邊長為3的正方體,點P、Q、R分別是棱AB、AD、AA1上的點,AP=AQ=AR=1,則四面體C1PQR的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

O是△ABC外接圓的圓心,AB=1,AC=2,且
AO
=x
AB
+
4-x
8
AC
(x∈R,且x≠0),則△ABC的邊長BC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下判斷:
①已知定點A(-5,0),B(5,0)和動點C,且滿足AC,BC所在直線斜率之積為2,則動點C連同點A,B的軌跡為雙曲線;
②已知圓C1:(x-4)2+y2=169,圓C2:(x+4)2+y2=9,有一動圓在圓C1的內(nèi)部且和圓C1內(nèi)切,和圓C2相外切,則動圓圓心的軌跡為橢圓;
③已知正方體ABCD-A1B1C1D1中(如圖1),P是側(cè)面BB1C1C內(nèi)的動點,若P到直線BC和直線C1D1的距離相等,則動點P的軌跡是線段;
④已知正方體ABCD-A1B1C1D1中(如圖2),M為AB中點,棱長為2,P是底面ABCD上的動點,且滿足條件PD1=
3PM,則動點P在底面ABCD上形成的軌跡是圓.其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足不等式組
2x-y≤0
x+y-3≥0
x+2y≤m
,且z=x-y的最小值為-3,則實數(shù)m的值為( 。
A、-1
B、-
5
2
C、6
D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯誤的是(  )
A、如果直線上的兩點在一個平面內(nèi),那么此直線在平面內(nèi)
B、過空間中三點,有且只有一個平面
C、若兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線
D、平行于同一條直線的兩條直線互相平行

查看答案和解析>>

同步練習(xí)冊答案