已知全集I={1,2,3,4,5,6},集合A={1,2,4,6},B={2,4,5,6},則∁I(A∩B)=(  )
A、{1,2,4,5,6}
B、{1,3,5}
C、{3}
D、Φ
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專(zhuān)題:集合
分析:根據(jù)A與B求出兩集合的交集,由全集I,求出交集的補(bǔ)集即可.
解答: 解:∵A={1,2,4,6},B={2,4,5,6},
∴A∩B={2,4,6},
∵全集I={1,2,3,4,5,6},
∴∁I(A∩B)={1,3,5}.
故選:B.
點(diǎn)評(píng):此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=msinx+
2
cosx(m為常數(shù),且m<0)的最大值為2,則函數(shù)f(x)的單調(diào)遞減區(qū)間為( 。ㄆ渲衚∈Z)
A、[2kπ+
π
4
,2kπ+
4
]
B、[2kπ-
π
4
,2kπ+
4
]
C、[2kπ-
4
,2kπ+
π
4
]
D、[2kπ-
4
,2kπ-
π
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意實(shí)數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算.已知1*2=3,2*3=4,并且有一個(gè)非零常數(shù)m,使得對(duì)任意實(shí)數(shù)x,都有x*m=x,則m的值是( 。
A、-4B、4C、-5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的S值為( 。
A、10B、15C、21D、28

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=3,則
sinα+cosα
sinα-cosα
=(  )
A、1B、2C、-1D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了得到函數(shù)y=3sin(x-
π
5
)
的圖象,只要把y=3sin(x+
π
5
)
上所有的點(diǎn)( 。
A、向右平行移動(dòng)
π
5
的單位長(zhǎng)度
B、向左平行移動(dòng)
π
5
的單位長(zhǎng)度
C、向右平行移動(dòng)
5
的單位長(zhǎng)度
D、向左平行移動(dòng)
5
的單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
3
,過(guò)右焦點(diǎn)F的直線(xiàn)l與C相交于A,B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為
2
2

(1)求橢圓的方程;
(2)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有
OP
=
OA
+
OB
成立?若存在,求出所有的P點(diǎn)的坐標(biāo)及l(fā)的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的一個(gè)焦點(diǎn)為(
2
,0)
,且長(zhǎng)軸長(zhǎng)為短軸長(zhǎng)的
3
倍.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的下頂點(diǎn)為A,且橢圓與直線(xiàn)y=kx+m(k≠0)相交于不同的兩點(diǎn)M,N.當(dāng)|AM|=|AN|時(shí),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐P-ABCD中,底面ABCD為菱形,∠ABC=60°,PA⊥平面ABCD,E為BC中點(diǎn),求證:AE⊥PD.

查看答案和解析>>

同步練習(xí)冊(cè)答案