【題目】高三數(shù)學(xué)考試中,一般有一道選做題,學(xué)生可以從選修4-4和選修4-5中任選一題作答,滿分10.某高三年級共有1000名學(xué)生參加了某次數(shù)學(xué)考試,為了了解學(xué)生的作答情況,計劃從該年級1000名考生成績中隨機(jī)抽取一個容量為10的樣本,為此將1000名考生的成績按照隨機(jī)順序依次編號為000~999.

1)若采用系統(tǒng)抽樣法抽樣,從編號為000~999的成績中隨機(jī)確定的編號為026,求樣本中的最大編號.

2)若采用分層抽樣法,按照學(xué)生選擇選修4-4或選修4-5的情況將成績分為兩層,已知該校共有600名考生選擇了選修4-4400名考生選擇了選修4-5,在選取的樣本中,選擇選修4-4的平均得分為6分,方差為2,選擇選修4-5的平均得分為5分,方差為0.75.用樣本估計該校1000名考生選做題的平均得分和得分的方差.

【答案】12)估計該校1000名考生選做題的平均得分為5.6,方差為1.74

【解析】

1)首先求得組距,再求得樣本中的最大編號.

2)根據(jù)樣本中選和選的平均得分和得分的方差列方程,由此計算出抽樣的人的平均得分和得分的方差,進(jìn)而估計出該校名考生選做題的平均得分和得分的方差.

1)組距為,所以最大編號為.

2)樣本中選擇選修4-4的考生有6人,4-5的考生有4人,所以得分平均數(shù)為

從選擇選修4-4的考生中抽取6人,分別記為,,…,,

從選擇選修4-5的考生中抽取4人,分別記為,,

,

由于,所以

所以,

同理可求得,

所以樣本得分的方差為

.

所以估計該校1000名考生選做題的平均得分為5.6,方差為1.74.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,ACBC,D,E分別是A1B1,BC的中點.求證:

1)平面ACD⊥平面BCC1B1;

2B1E∥平面ACD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線C1的參數(shù)方程為t為參數(shù),0απ),曲線C2的參數(shù)方程為φ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線C2的極坐標(biāo)方程;

2)設(shè)曲線C1與曲線C2的交點分別為AB,M(﹣20),求|MA|2+|MB|2的最大值及此時直線C1的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若處導(dǎo)數(shù)相等,證明:為定值,并求出該定值;

(2)已知對于任意,直線與曲線有唯一公共點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),圓的參數(shù)方程為為參數(shù))

1)求的普通方程;

2)設(shè)點,直線與曲線相交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論極值點個數(shù);

2)證明:不等式恒成立.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體中,平面,四邊形為平行四邊形,點分別為的中點,且,.

1)求證:平面;

2)若,求該多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)),已知有且僅有3個零點,下列結(jié)論正確的是(

A.上存在,,滿足

B.有且僅有1個最小值點

C.單調(diào)遞增

D.的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),對任意的都有,且當(dāng)時,,則當(dāng)時,方程的所有根之和為_____

查看答案和解析>>

同步練習(xí)冊答案